13.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<2}\\{{x}^{2},x≥2}\end{array}\right.$,若f(a+1)≥f(2a-1),則實(shí)數(shù)a的取值范圍是(-∞,2].

分析 根據(jù)指數(shù)函數(shù)和冪函數(shù)的性質(zhì)可得,當(dāng)x<2時(shí),f(x)=2x為增函數(shù),且f(x)<f(2)=4,由于當(dāng)x>2時(shí),f(x)=x2為增函數(shù),且f(x)≥f(2)=4,即可得到f(x)在R上為增函數(shù),問(wèn)題得以解決.

解答 解:由于當(dāng)x<2時(shí),f(x)=2x為增函數(shù),且f(x)<f(2)=4
由于當(dāng)x>2時(shí),f(x)=x2為增函數(shù),且f(x)≥f(2)=4,
∴f(x)在R上為增函數(shù),
∵f(a+1)≥f(2a-1),
∴a+1≥2a-1,
解得a≤2,
故a的取值范圍為(-∞,2],
故答案為:(-∞,2].

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的單調(diào)性,其中根據(jù)已知構(gòu)造關(guān)于a的不等式,是解答的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若tanα=2tan$\frac{π}{18}$,則$\frac{cos(α-\frac{4π}{9})}{sin(α-\frac{π}{18})}$的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=log2x-x+3的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=x2+1的值域是( 。
A.[0,+∞)B.[1,+∞)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知M(x1,0),N(x2,$\frac{{\sqrt{2}}}{2}A}$)在函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象上,|x1-x2|的最小值$\frac{π}{3}$,則ω=( 。
A.$\frac{3}{4}$B.$\frac{1}{3}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知{an}為等比數(shù)列,a2=2,a6=162,則a10=13122.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知定義在(-1,1)上的函數(shù)f(x)滿足:對(duì)任意x,y∈(-1,1)都有f(x)+f(y)=f(x+y).
(Ⅰ)求證:函數(shù)f(x)是奇函數(shù);
(Ⅱ)如果當(dāng)x∈(-1,0]時(shí),有f(x)<0,試判斷f(x)在(-1,1)上的單調(diào)性,并用定義證明你的判斷;
(Ⅲ)在(Ⅱ)的條件下,若a-8x+1>0對(duì)滿足不等式f(x-$\frac{1}{2}$)+f($\frac{1}{4}$-2x)<0的任意x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,OABC是矩形,B在拋物線y=x2上,A為(1,0),現(xiàn)從OABC內(nèi)任取一點(diǎn),則該點(diǎn)來(lái)自陰影部分的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知空間四邊形ABCD的兩條對(duì)角線的長(zhǎng)AC=6,BD=8,AC與BD所成的角為30o,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),求四邊形EFGH的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案