證明柯西不等式:

 

答案:
解析:

證明:∵ (a i xbi) 2≥0(對于x∈R)       

∴ (a 1 xb1) 2+(a 2 xb2) 2+…+ (a n xbn) 2≥0

對于x∈R恒成立.

也就是:

對于x∈R恒成立.

>0,(a1,a2,…an不全為零)

即:

a1 = a2 = … = a n = 0.顯然成立.

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•廈門模擬)本小題設有(1)(2)(3)三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知e1=
1
1
是矩陣M=
a
 1
0
 b
屬于特征值λ1=2的一個特征向量.
(I)求矩陣M;
(Ⅱ)若a=
2
1
,求M10a.
(2)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,A(l,0),B(2,0)是兩個定點,曲線C的參數(shù)方程為
AB
為參數(shù)).
(I)將曲線C的參數(shù)方程化為普通方程;
(Ⅱ)以A(l,0為極點,|
AB
|為長度單位,射線AB為極軸建立極坐標系,求曲線C的極坐標方程.
(3)選修4-5:不等式選講
(I)試證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|(zhì)y|,求
1
(x+y
)
2
 
+
1
(x-y
)
2
 
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

證明柯西不等式的推論:設a1 ,a2 ,a n為正實數(shù)

則:

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省高三5月高考三輪模擬理科數(shù)學試卷(解析版) 題型:解答題

(I)試證明柯西不等式:

(II)已知,且,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年福建省廈門市高三5月適應性考試數(shù)學試卷(理科)(解析版) 題型:解答題

本小題設有(1)(2)(3)三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知是矩陣屬于特征值λ1=2的一個特征向量.
(I)求矩陣M;
(Ⅱ)若,求M10a.
(2)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,A(l,0),B(2,0)是兩個定點,曲線C的參數(shù)方程為為參數(shù)).
(I)將曲線C的參數(shù)方程化為普通方程;
(Ⅱ)以A(l,0為極點,||為長度單位,射線AB為極軸建立極坐標系,求曲線C的極坐標方程.
(3)選修4-5:不等式選講
(I)試證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|(zhì)y|,求的最小值.

查看答案和解析>>

同步練習冊答案