如圖,已知⊙O的直徑AB=3,點(diǎn)C為⊙O上異于A、B的一點(diǎn),VC⊥平面ABC,且VC=2,點(diǎn)M為線段VB的中點(diǎn).(Ⅰ)求證:BC⊥平面VAC
(Ⅱ)若AC=1,求直線AM與平面VAC所成角的大小.
考點(diǎn):直線與平面垂直的判定,直線與平面所成的角
專題:空間位置關(guān)系與距離,空間向量及應(yīng)用
分析:(Ⅰ)由線面垂直得VC⊥BC,由直徑性質(zhì)得AC⊥BC,由此能證明BC⊥平面VAC.
(Ⅱ)分別以AC,BC,VC所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AM與平面VAC所成角為θ.
解答: 證明:(Ⅰ)∵VC⊥平面ABC,BC?平面ABC,
∴VC⊥BC,
∵點(diǎn)C為⊙O上一點(diǎn),且AB為直徑,
∴AC⊥BC,
又∵VC,AC?平面VAC,VC∩AC=C,
∴BC⊥平面VAC.
(Ⅱ)解:由(Ⅰ)得BC⊥VC,VC⊥AC,AC⊥BC,分別以AC,BC,VC所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
則A(1,0,0),V(0,0,2),B(0,2
2
,0),
VA
=(1,0,-2),
AB
=(-1,2
2
,0),M(0,
2
,1),
AM
=(-1,
2
,1),
平面VAC的法向量
m
=
CB
=(0,2
2
,0),
設(shè)直線AM與平面VAC所成角為θ,則
cos(
π
2
)=cos<
AM
m
>=
4
2×2
2
=
2
2
,
故可求得:θ=
π
4
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查二面角的余弦值的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用,考查了轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象交x軸于點(diǎn)A(x0,0)和點(diǎn)B(2,0),與y軸的正半軸交于點(diǎn)C,其對(duì)稱軸是直線x=-1,tan∠BAC=2,點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)D.
(1)確定A、C、D三點(diǎn)的坐標(biāo);
(2)求過B、C、D三點(diǎn)的二次函數(shù)的解析式;
(3)若過點(diǎn)(0,3)且平行于x軸的直線與(2)小題中所求拋物線交于M、N兩點(diǎn),以MN為一邊,二次函數(shù)圖象上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式.
(4)當(dāng)
1
2
<x<4
時(shí),(3)小題中平行四邊形的面積是否有最大值?若有,請(qǐng)求出;若無,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin330°+(
2
-1)0+3 log32=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方形ABCD的邊長為2
2
,四邊形BDEF是平行四邊形,BD與AC交于點(diǎn)G,O為GC的中點(diǎn),F(xiàn)O=
3
,且FO⊥平面ABCD.
(Ⅰ)求證:AE∥平面BCF;
(Ⅱ)求證:CF⊥平面AEF;
(Ⅲ)求二面角A-CF-B余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosx(sinx-
3
cosx)+
3
2

(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈{-1,1,2},則直線ax+by-3=0(a2+b2≠0)與圓x2+y2=4有公共點(diǎn)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)正四棱錐的左視圖是一個(gè)邊長為2的正三角形(如圖),則該正四棱錐的體積是( 。
A、1
B、
3
C、
4
3
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin2x+2sinxcosx+3cos2x
(Ⅰ)若x∈R,求函數(shù)f(x)的最小正周期
(Ⅱ)在△ABC中,a,b,c分別是內(nèi)角A、B、C的 對(duì)邊,若bsinA=
3
accosB,求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,焦點(diǎn)到漸近線的距離為
3
,則此雙曲線的焦距等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案