【題目】已知、分別是橢圓 的左、右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于,兩點(diǎn),若,其中為坐標(biāo)原點(diǎn),判斷到直線的距離是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.
【答案】(1)(2)
【解析】試題分析:(1)根據(jù),,得到,列式求值即可.
(2)坐標(biāo)化可得,原點(diǎn)到直線的距離 ②,將①式代入②式得:,得解.
(1),,
,
則,化簡(jiǎn)得,
又,,
則,得,則,
橢圓的方程為.
(2)由題意知,直線不過原點(diǎn),設(shè),,
(i)當(dāng)直線軸時(shí),直線的方程為且,
則,,,,
,,,
解得,故直線的方程為,
原點(diǎn)到直線的距離為.
(ii)當(dāng)直線不垂直于軸時(shí),
設(shè)直線的方程為,聯(lián)立直線和橢圓方程消去得,
,,
.
,,故,
即,①,
原點(diǎn)到直線的距離為,
則 ②,將①式代入②式得:,
.
綜上,點(diǎn)到直線的距離為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為正項(xiàng)數(shù)列的前n項(xiàng)和,且滿足.
(1)求出,
(2)猜想的通項(xiàng)公式并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點(diǎn)M(1,0),傾斜角為.
(Ⅰ)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若曲線C經(jīng)過伸縮變換后得到曲線C′,且直線l與曲線C′交于A,B兩點(diǎn),求|MA|+|MB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn).
.求證:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE;(III)若PB與底面所成的角為600, AB=2a,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn-an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寧夏某市2008年至2012年新建商品住宅每平方米的均價(jià)(單位:千元)的數(shù)據(jù)如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 |
年份序號(hào)x | 1 | 2 | 3 | 4 | 5 |
每平米均價(jià)y | 2.0 | 3.1 | 4.5 | 6.5 | 7.9 |
(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析從2008年到2012年該市新建商品住宅每平方米均價(jià)的變化情況,并預(yù)測(cè)該市2015年新建商品住宅每平方米的均價(jià).
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點(diǎn)、分別為邊、的中點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn).
(1)求證:;
(2)求三棱錐的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在處的切線方程;
(2)證明:對(duì)任意的,都有;
(3)設(shè),比較與的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一根水平放置的長(zhǎng)方體形枕木的安全負(fù)荷與它的寬度成正比,與它的厚度的平方成正比,與它的長(zhǎng)度的平方成反比.
(Ⅰ)將此枕木翻轉(zhuǎn)90°(即寬度變?yōu)楹穸龋砟镜陌踩?fù)荷會(huì)如何變化?為什么?(設(shè)翻轉(zhuǎn)前后枕木的安全負(fù)荷分別為且翻轉(zhuǎn)前后的比例系數(shù)相同都為)
(Ⅱ)現(xiàn)有一根橫斷面為半圓(已知半圓的半徑為)的木材,用它來截取成長(zhǎng)方體形的枕木,其長(zhǎng)度為10,問截取枕木的厚度為多少時(shí),可使安全負(fù)荷最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com