20.若函數(shù)f(x)=ax,g(x)=loga|x|(a>0,且a≠1),若f(2)•g(2)<0,則函數(shù)f(x),g(x)在同一坐標(biāo)系中的大致圖象是( 。
A.B.C.D.

分析 先由條件f(2)•g(2)<0確定a的取值范圍,然后利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)去判斷f(x),g(x)的圖象.

解答 解:∵f(2)•g(2)=a2•loga2<0,∴l(xiāng)oga2<0,∴0<a<1,
∴函數(shù)f(x)=ax 單調(diào)遞減,g(x)=loga|x|在(0,+∞)上單調(diào)遞減,
故選:A.

點(diǎn)評 本題主要考查了函數(shù)圖象的識別和應(yīng)用,判斷函數(shù)圖象要充分利用函數(shù)本身的性質(zhì),由f(2)•g(2)<0確定a的取值范圍,是解決本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的通項(xiàng)公式an=2n-(-1)n,n∈N*.設(shè)an1,an2,…,ant(其中n1<n2<…<nt,t∈N*)成等差數(shù)列.
(1)若t=3.
①當(dāng)n1,n2,n3為連續(xù)正整數(shù)時,求n1的值;
②當(dāng)n1=1時,求證:n3-n2為定值;
(2)求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知cosα=$\frac{4}{5}$,α是第四象限角,則sin(2π-α)=( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.±$\frac{3}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一元二次不等式ax2+bx+c>0的解集是(-$\frac{1}{3}$,2),則cx2+bx+a<0的解集是(  )
A.(-3,$\frac{1}{2}$)B.(-∞,-3)∪($\frac{1}{2}$,+∞)C.(-2,$\frac{1}{3}$)D.(-∞,-2)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax-lnx-1,若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與直線2x+y-1=0垂直.
(1)求a的值;
(2)函數(shù)g(x)=f(x)-m(x-1)(m∈R)恰有兩個零點(diǎn)x1,x2(x1<x2),求函數(shù)g(x)的單調(diào)區(qū)間及實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知x,y滿足$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$,則z=y-x的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.從重量分別為1,2,3,4,…,10,11克的砝碼(每種砝碼各一個)中選出若干個,使其總重量恰為10克的方法總數(shù)為m,下列各式的展開式中x10的系數(shù)為m的選項(xiàng)是( 。
A.(1+x)(1+x2)(1+x3)…(1+x11
B.(1+x)(1+2x)(1+3x)…(1+11x)
C.(1+x)(1+2x2)(1+3x3)…(1+11x11
D.(1+x)(1+x+x2)(1+x+x2+x3)…(1+x+x2+…+x11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,在圓心角為直角的扇形OAB中,分別以O(shè)A,OB為直徑作兩個半圓,在扇形OAB內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是$\frac{1}{2}$-$\frac{1}{π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.小明為了更好地把握回歸分析的知識,他試圖用流程圖形象地表示建立回歸模型的過程:

則最適合填寫流程圖中空白框的一項(xiàng)是(  )
A.預(yù)報B.計算真實(shí)值yC.比較模型效果D.殘差異常分析

查看答案和解析>>

同步練習(xí)冊答案