已知一企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)品(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
(注:年利潤=年銷售收入-年總成本)

(1);(2) 時,取最大值.

解析試題分析:本題是實際應(yīng)用題(1)利用年利潤=年銷售收入-年總成本及每千件的銷售收入,分段來表示;(2)在每一段內(nèi)利用導(dǎo)數(shù)判函數(shù)的單調(diào)性,求每一段內(nèi)的最值,兩段比較最大者為最大值.
試題解析:(1)當(dāng)時,
當(dāng)時,
                       4分
(2)①當(dāng)時,由,得且當(dāng)時,;當(dāng)時,;
當(dāng)時,取最大值,且         8分
②當(dāng)時,
當(dāng)且僅當(dāng),即時,
綜合①、②知時,取最大值.
所以當(dāng)年產(chǎn)量為9千件時,該企業(yè)生產(chǎn)此產(chǎn)品獲利最大.             12分
考點:1.分段函數(shù)的最值;2.函數(shù)的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

化簡或求值:
(1);
(2)計算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求證不論為何實數(shù),總是增函數(shù);
(2)確定的值,使為奇函數(shù);
(3)當(dāng)為奇函數(shù)時,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)上至少有一個零點,求的取值范圍;
(Ⅱ)若函數(shù)上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),.
(1)請寫出的表達式(不需證明);
(2)求的極小值;
(3)設(shè)的最大值為的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

把長為10cm的細鐵絲截成兩段,各自圍成一個正方形,求這兩個正方形面積之和的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù)
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中.若函數(shù)僅在處有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),
(1)若,求曲線在點處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場在店慶一周年開展“購物折上折活動”:商場內(nèi)所有商品按標(biāo)價的八折出售,折后價格每滿500元再減100元.如某商品標(biāo)價為1500元,則購買該商品的實際付款額為1500×0.8-200=1000(元).設(shè)購買某商品得到的實際折扣率.設(shè)某商品標(biāo)價為元,購買該商品得到的實際折扣率為
(Ⅰ)寫出當(dāng)時,關(guān)于的函數(shù)解析式,并求出購買標(biāo)價為1000元商品得到的實際折扣率;
(Ⅱ)對于標(biāo)價在[2500,3500]的商品,顧客購買標(biāo)價為多少元的商品,可得到的實際折扣率低于

查看答案和解析>>

同步練習(xí)冊答案