5.復(fù)數(shù)z=$\frac{1-i}{2i}$,其中i是虛數(shù)單位,則復(fù)數(shù)z的虛部是$-\frac{1}{2}$.

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:∵z=$\frac{1-i}{2i}$=$\frac{-i(1-i)}{-2{i}^{2}}=-\frac{1}{2}-\frac{i}{2}$,
∴復(fù)數(shù)z的虛部是-$\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=x-$\frac{4}{x}$的零點個數(shù)是( 。
A.0B.1C.2D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合$A=\{x\left|{\frac{x-5}{x+1}≤0}\right.\}$,B={x|x2-2x-m<0}.
(1)當m=3時,求(∁RB)∩A;
(2)若A∩B={x|-1<x<4},求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知tan(π+θ)=-3,求4sin2θ-3sinθcosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.將一張畫有直角坐標系的圖紙折疊一次,使得點A(0,2)與點B(4,0)重合,若此時點C(7,3)與點D(m,n)重合,則m+n的值為( 。
A.6B.$\frac{31}{2}$C.5D.$\frac{34}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某濕地公園內(nèi)有一條河,現(xiàn)打算建一座橋(如圖1)將河兩岸的路連接起來,剖面設(shè)計圖紙(圖2)如下,

其中,點A,E為x軸上關(guān)于原點對稱的兩點,曲線段BCD是橋的主體,C為橋頂,并且曲線段BCD在圖紙上的圖形對應(yīng)函數(shù)的解析式為y=$\frac{8}{4+{x}^{2}}$(x∈[-2,2]),曲線段AB,DE均為開口向上的拋物線段,且A,E分別為兩拋物線的頂點.設(shè)計時要求:保持兩曲線在各銜接處(B,D)的切線的斜率相等.
(1)曲線段AB在圖紙上對應(yīng)函數(shù)的解析式,并寫出定義域;
(2)車輛從A經(jīng)B到C爬坡,定義車輛上橋過程中某點P所需要的爬坡能力為:M=(該點P與橋頂間的水平距離)×(設(shè)計圖紙上該點P處的切線的斜率)其中MP的單位:米.若該景區(qū)可提供三種類型的觀光車:①游客踏乘;②蓄電池動力;③內(nèi)燃機動力,它們的爬坡能力分別為0.8米,1.5米,2.0米,用已知圖紙上一個單位長度表示實際長度1米,試問三種類型的觀光車是否都可以順利過橋?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知拋物線:y2=4x,直線l:x-y+4=0,拋物線上有一動點P到y(tǒng)軸的距離為d1,P到直線l的距離為d2,則d1+d2的最小值為( 。
A.$\frac{5\sqrt{2}}{2}$B.$\frac{5\sqrt{2}}{2}$+1C.$\frac{5\sqrt{2}}{2}$-2D.$\frac{5\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四條直線,傾斜角最大的是( 。
A.x=1B.y=x+1C.y=2x+1D.y=-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若sin(α-β)cosβ+cos(α-β)sinβ=-m,且α為第四象限,則cosα的值為( 。
A.$\sqrt{1-{m^2}}$B.$-\sqrt{1-{m^2}}$C.$\sqrt{{m^2}-1}$D.$-\sqrt{{m^2}-1}$

查看答案和解析>>

同步練習冊答案