【題目】已知過點(diǎn)的曲線的方程為.
(Ⅰ)求曲線的標(biāo)準(zhǔn)方程:
(Ⅱ)已知點(diǎn),為直線上任意一點(diǎn),過作的垂線交曲線于點(diǎn),.
(。┳C明:平分線段(其中為坐標(biāo)原點(diǎn));
(ⅱ)求最大值.
【答案】(Ⅰ)(Ⅱ)(。┮娊馕觯áⅲ1
【解析】
(I)由題意把點(diǎn)代入方程可得的值,利用橢圓的定義可求出曲線的標(biāo)準(zhǔn)方程;
(II)(i)先設(shè),,的中點(diǎn),和直線的方程為和直線的方程為,聯(lián)解橢圓方程可得到的坐標(biāo),證明即三點(diǎn)共線,即證明出平分線段;
(ii)利用兩點(diǎn)間距離公式和橢圓弦長公式分別求出,利用基本不等式求最值.
解:(Ⅰ)將代入曲線的方程,
即,
解得;
由橢圓定義可知曲線的軌跡為以,為焦點(diǎn)的橢圓,
即,,
所以的標(biāo)準(zhǔn)方程為.
(Ⅱ)(。┰O(shè),,的中點(diǎn)
設(shè)的方程為,
則的方程為,
所以.
將直線與橢圓的方程聯(lián)立,
得.
則,,
,
,
,
平分線段.
(ⅱ),
,令,即,
令,
則,
在上為增函數(shù),
即,
(當(dāng)且僅當(dāng)“”時(shí)取等號)
的最大值為1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)在假期進(jìn)行社會(huì)實(shí)踐活動(dòng),對歲的人群隨機(jī)抽取n人進(jìn)行了一次當(dāng)前投資生活方式——“房地產(chǎn)投資”的調(diào)查,得到如下統(tǒng)計(jì)和各年齡段人數(shù)頻率分布直方圖:
(Ⅰ)求,,的值;
(Ⅱ)從年齡在歲的“房地產(chǎn)投資”人群中采取分層抽樣法抽取9人參加投資管理學(xué)習(xí)活動(dòng),其中選取3人作為代表發(fā)言,記選取的3名代表中年齡在歲的人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某項(xiàng)針對我國《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》的研究中,列出各個(gè)學(xué)段每個(gè)主題所包含的條目數(shù)(如下表),下圖是統(tǒng)計(jì)表的條目數(shù)轉(zhuǎn)化為百分比,按各學(xué)段繪制的等高條形圖,由圖表分析得出以下四個(gè)結(jié)論,其中錯(cuò)誤的是( )
A.除了“綜合實(shí)踐”外,其它三個(gè)領(lǐng)域的條目數(shù)都隨著學(xué)段的升高而增加,尤其“圖象幾何” 在第三學(xué)段增加較多,約是第二學(xué)段的倍.
B.所有主題中,三個(gè)學(xué)段的總和“圖形幾何”條目數(shù)最多,占50%,綜合實(shí)踐最少,約占4% .
C.第一、二學(xué)段“數(shù)與代數(shù)”條目數(shù)最多,第三學(xué)段“圖形幾何”條目數(shù)最多.
D.“數(shù)與代數(shù)”條目數(shù)雖然隨著學(xué)段的增長而增長,而其百分比卻一直在減少.“圖形幾何”條目數(shù),百分比都隨學(xué)段的增長而增長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三(3)班有學(xué)生50人,現(xiàn)調(diào)查該班學(xué)生每周平均體育鍛煉時(shí)間的情況,得到如下頻率分布直方圖,其中數(shù)據(jù)的分組區(qū)間為:,,,,,
(1)從每周平均體育鍛煉時(shí)間在的學(xué)生中,隨機(jī)抽取2人進(jìn)行調(diào)查,求這2人的每周平均體育鍛煉時(shí)間都超過2小時(shí)的概率;
(2)已知全班學(xué)生中有40%是女姓,其中恰有3個(gè)女生的每周平均體育鍛煉時(shí)間不超過4小時(shí),若每周平均體育鍛煉時(shí)間超過4小時(shí)稱為經(jīng)常鍛煉,問:有沒有90%的把握說明,經(jīng)常鍛煉與否與性別有關(guān)?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某初中學(xué)校學(xué)生睡眠狀況,在該校全體學(xué)生中隨機(jī)抽取了容量為120的樣本,統(tǒng)計(jì)睡眠時(shí)間(單位:).經(jīng)統(tǒng)計(jì),時(shí)間均在區(qū)間內(nèi),將其按,,,,,分成6組,制成如圖所示的頻率分布直方圖:
(1)世界衛(wèi)生組織表明,該年齡段的學(xué)生睡眠時(shí)間服從正態(tài)分布,其標(biāo)準(zhǔn)為:該年齡段的學(xué)生睡眠時(shí)間的平均值,方差.根據(jù)原則,用樣本估計(jì)總體,判斷該初中學(xué)校學(xué)生睡眠時(shí)間在區(qū)間上是否達(dá)標(biāo)?
(參考公式:,,)
(2)若規(guī)定睡眠時(shí)間不低于為優(yōu)質(zhì)睡眠.已知所抽取的這120名學(xué)生中,男、女睡眠質(zhì)量人數(shù)如下列聯(lián)表所示:
優(yōu)質(zhì)睡眠 | 非優(yōu)質(zhì)睡眠 | 合計(jì) | |
男 | 60 | ||
女 | 19 | ||
合計(jì) |
將列聯(lián)表數(shù)據(jù)補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)睡眠與性別有關(guān)系,并說明理由;
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l:x﹣ty+1=0(t>0)和拋物線C:y2=4x相交于不同兩點(diǎn)A、B,設(shè)AB的中點(diǎn)為M,拋物線C的焦點(diǎn)為F,以MF為直徑的圓與直線l相交另一點(diǎn)為N,且滿足|MN||NF|,則直線l的方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸
為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)在曲線上,曲線在點(diǎn)處的切線與直線垂直,求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備上市一款新型轎車零配件,上市之前擬在其一個(gè)下屬4S店進(jìn)行連續(xù)30天的試銷.定價(jià)為1000元/件.試銷結(jié)束后統(tǒng)計(jì)得到該4S店這30天內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:
日銷售量 | 40 | 60 | 80 | 100 |
頻數(shù) | 9 | 12 | 6 | 3 |
(1)若該4S店試銷期間每個(gè)零件的進(jìn)價(jià)為650元/件,求試銷連續(xù)30天中該零件日銷售總利潤不低于24500元的頻率;
(2)試銷結(jié)束后,這款零件正式上市,每個(gè)定價(jià)仍為1000元,但生產(chǎn)公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價(jià)為550元/件;小箱每箱有45件,批發(fā)價(jià)為600元/件.該4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒銷售出的零件按批發(fā)價(jià)的9折轉(zhuǎn)給該公司的另一下屬4S店.假設(shè)該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數(shù)據(jù)如下表:
日銷售量 | 50 | 70 | 90 | 110 |
頻數(shù) | 5 | 15 | 8 | 2 |
(。┰O(shè)該4S店試銷結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤;
(ⅱ)以總利潤作為決策依據(jù),該4S店試銷結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com