【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中“開立圓術(shù)”曰:置積尺數(shù),以十六乘之,九而一,所得開立方除之,即立圓徑,“開立圓術(shù)”相當(dāng)于給出了已知球的體積V,求其直徑d的一個近似公式d≈ .人們還用過一些類似的近似公式.根據(jù)π=3.14159…..判斷,下列近似公式中最精確的一個是( )
A.d≈
B.d≈
C.d≈
D.d≈
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合M={x|x2+3x+2<0},集合 ,則M∪N=( )
A.{x|x≥﹣2}
B.{x|x>﹣1}
C.{x|x<﹣1}
D.{x|x≤﹣2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.
(1)求橢圓方程;
(2)設(shè)不過原點O的直線,與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為,滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+x﹣lnx,(a>0). (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)f(x)極值點為x0 , 若存在x1 , x2∈(0,+∞),且x1≠x2 , 使f(x1)=f(x2),求證:x1+x2>2x0 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,0),若函數(shù)f(x)的圖象上存在兩點B、C到點A的距離相等,則稱該函數(shù)f(x)為“點距函數(shù)”,給定下列三個函數(shù):①y=﹣x+2;② ;③y=x+1.其中,“點距函數(shù)”的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】17世紀(jì)日本數(shù)學(xué)家們對這個數(shù)學(xué)關(guān)于體積方法的問題還不了解,他們將體積公式“V=kD3”中的常數(shù)k稱為“立圓術(shù)”或“玉積率”,創(chuàng)用了求“玉積率”的獨(dú)特方法“會玉術(shù)”,其中,D為直徑,類似地,對于等邊圓柱(軸截面是正方形的圓柱叫做等邊圓柱)、正方體也有類似的體積公式V=kD3 , 其中,在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長,假設(shè)運(yùn)用此“會玉術(shù)”,求得的球、等邊圓柱、正方體的“玉積率”分別為k1 , k2 , k3=( )
A. : :1
B. : :2
C.1:3:
D.1: :
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間之間的相關(guān)關(guān)系,某重點高中數(shù)學(xué)教師對新入學(xué)的45名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績不足120分的占 ,統(tǒng)計成績后,得到如下的2×2列聯(lián)表:
分?jǐn)?shù)大于等于120分 | 分?jǐn)?shù)不足120分 | 合 計 | |
周做題時間不少于15小時 | 4 | 19 | |
周做題時間不足15小時 | |||
合 計 | 45 |
(Ⅰ)請完成上面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”;
(Ⅱ)(i) 按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時間不足15小時的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
(ii) 若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機(jī)抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com