在平面內(nèi)給定三個向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)
(Ⅰ)求滿足
a
=m
b
+n
c
的實數(shù)m、n的值
(Ⅱ)若向量
d
滿足(
d
-
c
)∥(
a
+
b
),且|
d
-
c
|=
5
,求向量
d
的坐標(biāo).
考點:平面向量的坐標(biāo)運算,平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:(Ⅰ)求滿足
a
=m
b
+n
c
的實數(shù)m、n的值
(Ⅱ)若向量
d
滿足(
d
-
c
)∥(
a
+
b
),且|
d
-
c
|=
5
,求向量
d
的坐標(biāo).
解答: 解:(Ⅰ)由已知條件以及
a
=m
b
+n
c
,可得:(3,2)=m(-2,2)+n(4,1)=(-m+4n,2m+n).
-m+4n=3
2m+n=2
,解得實數(shù)m=
5
9
,n=
8
9

(Ⅱ)設(shè)向量
d
=(x,y),
d
-
c
=(x-4,y-1),
a
+
b
=(2,4),
∵(
d
-
c
)∥(
a
+
b
),
|
d
-
c
|=
5
,
4(x-4)-2(y-1)=0
(x-4)2+(y-1)2=5
,解得
x=3
y=-1
x=5
y=3
,
向量
d
的坐標(biāo)為(3,-1)或(5,3).
點評:本題考查向量共線的充要條件以及向量的模,向量的坐標(biāo)運算,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是( 。
A、用簡單隨機抽樣、系統(tǒng)抽樣和分層抽樣的方法抽取樣本時,要求個體被抽取到的概率相等,但是在系統(tǒng)抽樣中,如果不能平均分組時,除剔除的某些個體被抽取到的概率就和后面參與抽取的其它個體被抽取的概率不同
B、在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等
C、在相同條件下的重復(fù)試驗中,某一隨機事件出現(xiàn)的頻率就是該隨機事件的概率
D、在一定條件下,概率為0的事件一定是不可能事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一條直線與兩條平行線中的一條垂直,那么它和另一條直線( 。
A、垂直B、平行C、異面D、相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
1+tanα
2sin2α+2sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,則復(fù)數(shù)
1
-1+i
的虛部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算 log21=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三角形ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=3,E,F(xiàn)分別是PC,PB的中點,記平面AEF與平面ABC的交線為直線l.
(1)求證:直線l∥BC;
(2)若直線l上一點Q滿足BQ∥AC,求平面PAC與平面EQB的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx-2,M(-2,0),N(-1,0),O為坐標(biāo)原點,動點Q滿足
|QM|
|QN|
=
2
,動點Q的軌跡為曲線C
(1)求曲線C的方程;
(2)若直線l與圓O:x2+y2=2交于不同的兩點A,B,當(dāng)∠AOB=
π
2
時,求k的值;
(3)若k=
1
2
,P是直線l上的動點,過點P作曲線C的兩條切線PC、PD,切點為C、D,探究:直線CD是否過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有五種不同的顏色要對如圖形中的四個部分進行著色,要求有公共邊的兩塊不能用同一種顏色,不同的著色方法有
 

查看答案和解析>>

同步練習(xí)冊答案