某種產(chǎn)品的廣告費(fèi)支出z與銷售額y(單位:萬元)之間有如下對(duì)應(yīng)數(shù)據(jù):
若廣告費(fèi)支出z與銷售額y回歸直線方程為多一6.5z+n(n∈R).
(1)試預(yù)測(cè)當(dāng)廣告費(fèi)支出為12萬元時(shí),銷售額是多少?
(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值不超過5的概率.
(1);(2).
解析試題分析:(1)回歸方程必過樣本中心點(diǎn),,將樣本中心點(diǎn)代入回歸方程,求出,即得回歸方程,當(dāng)廣告費(fèi)支出萬元時(shí),代入求得就是銷售額;
(2)將實(shí)際值與觀測(cè)值對(duì)應(yīng)列出,列舉法一一列出任取兩組的所有基本事件,至少有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值不超過的對(duì)立事件為,兩組都超過,找到兩組都超過的基本事件的個(gè)數(shù),.
(1)
因?yàn)辄c(diǎn)(5,50)在回歸直線上,代入回歸直線方程求得,
所求回歸直線方程為: 3分
當(dāng)廣告支出為12時(shí),銷售額. 5分
(2)實(shí)際值和預(yù)測(cè)值對(duì)應(yīng)表為
在已有的五組數(shù)據(jù)中任意抽取兩組的基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10個(gè), 10分
兩組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值都超過5的有(60,50),
所以至少有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值不超過5的概率為
. 12分
考點(diǎn):1.回歸方程;2.古典概型的概率問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)(2011•廣東)在某次測(cè)驗(yàn)中,有6位同學(xué)的平均成績?yōu)?5分.用xn表示編號(hào)為n(n=1,2,…,6)的同學(xué)所得成績,且前5位同學(xué)的成績?nèi)缦拢?br />
編號(hào)n | 1 | 2 | 3 | 4 | 5 |
成績xn | 70 | 76 | 72 | 70 | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某普通高中共有教師人,分為三個(gè)批次參加研修培訓(xùn),在三個(gè)批次中男、女教師人數(shù)如下表所示:
| 第一批次 | 第二批次 | 第三批次 |
女教師 | |||
男教師 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•重慶)從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得,,,.
(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
附:線性回歸方程y=bx+a中,,,其中,為樣本平均值,線性回歸方程也可寫為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
由某種設(shè)備的使用年限(年)與所支出的維修費(fèi)(萬元)的數(shù)據(jù)資料算得如下結(jié)果,,,,.
(1)求所支出的維修費(fèi)y對(duì)使用年限x的線性回歸方程;
(2)①判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
②當(dāng)使用年限為8年時(shí),試估計(jì)支出的維修費(fèi)是多少.
(附:在線性回歸方程中,),,其中,為樣本平均值.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60][60,70][70,80][80,90][90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績?cè)赱50,90)之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某企業(yè)有兩個(gè)分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個(gè)分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如下表:
甲廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.9830.02), | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.9830.02), | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
| 甲廠 | 乙廠 | 合計(jì) |
優(yōu)質(zhì)品 | | | |
非優(yōu)質(zhì)品 | | | |
合 計(jì) | | | |
P(χ2≥x0) | 0.05 | 0.01 |
x0 | 3.841 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com