【題目】已知命題 方程 有兩個(gè)不相等的負(fù)實(shí)根,

命題 不等式 的解集為 ,

(1)若為真命題,求 的取值范圍.

(2)若 為真命題, 為假命題,求 的取值范圍.

【答案】(1);(2).

【解析】

若命題p為真命題,可得,解得m.若命題q為真命題,m>0時(shí)△<0,解得m 為真命題, 為假命題,可得p與q必然一真一假,解出即可.

為真命題,即 不等式 的解集非空,

取并集即.

(2) ,若命題 真,則有 , 解得 若命題 真,由(1)

根據(jù) 為真命題, 為假命題,可得命題 和命題 一個(gè)為真,另一個(gè)為假.當(dāng)命題 為真、命題 為假時(shí),.當(dāng)命題 為假、命題 為真時(shí),

綜上可得, 的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】.已知函數(shù).

(1)求過(guò)點(diǎn)圖象的切線方程;

(2)若函數(shù)存在兩個(gè)極值點(diǎn), ,求的取值范圍;

(3)當(dāng)時(shí),均有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= (a>0,且a≠1)的值域?yàn)椋ī仭蓿?∞),則實(shí)數(shù)a的取值范圍是(
A.(3,+∞)
B.(0, ]
C.(1,3)
D.[ ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5 ,b=5,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤(rùn)為2萬(wàn)元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤(rùn)為3萬(wàn)元.分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).

(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(2)問(wèn)分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤(rùn)?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5 ,b=5,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表是一個(gè)由n2個(gè)正數(shù)組成的數(shù)表,用aij表示第i行第j個(gè)數(shù)(i,j∈N),已知數(shù)表中第一列各數(shù)從上到下依次構(gòu)成等差數(shù)列,每一行各數(shù)從左到右依次構(gòu)成等比數(shù)列,且公比都相等.已知a11=1,a31+a61=9,a35=48.

(1)求an1和a4n;
(2)設(shè)bn= +(﹣1)na (n∈N+),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn), 是橢圓上的點(diǎn),設(shè)動(dòng)點(diǎn)滿足.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)若直線與曲線相交于, 兩個(gè)不同點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為:,直線的方程為.

(1)求證:直線恒過(guò)定點(diǎn);

(2)當(dāng)直線被圓截得的弦長(zhǎng)最短時(shí),求直線的方程;

(3)在(2)的前提下,若為直線上的動(dòng)點(diǎn),且圓上存在兩個(gè)不同的點(diǎn)到點(diǎn)的距離為,求點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案