若數(shù)列{n(n+4)(
23
)
n
}
中的最大項是第k項,則k=
 
分析:求數(shù)列的最大值,可通過做差或做商比較法判斷數(shù)列的單調(diào)性處理.
解答:解:an=n(n+4)(
2
3
)
n

假設
an+1
an
=
( n+1)(n+5)(
2
3
)
n+1
n(n+4)(
2
3
)
n
=
2
3
( n+1)(n+5)
n(n+4)
≥1
則2(n+1)(n+5)≥3n(n+4),即n2≤10,所以n<4,
又n是整數(shù),即n≤3時,an+1>an,
當n≥4時,an+1<an,
所以a4最大
故答案為:4
點評:本題考查數(shù)列的最值問題,利用做差或做商比較法判斷數(shù)列的單調(diào)性是求數(shù)列最值的常用方式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

現(xiàn)有下列命題:
①設a,b為正實數(shù),若a2-b2=1,則a-b<1;
②已知a>2b>0,則a2+
8
b(a-2b)
的最小值為16;
③數(shù)列{n(n+4)(
2
3
)n}中的最大項是第4項
;
④設函數(shù)f(x)=
lg|x-1|,x≠1
0,x=1
,則關于x的方程f2(x)+2f(x)=0有4個解.
⑤若sinx+siny=
1
3
,則siny-cos2x的最大值是
4
3

其中的真命題有
①②③
①②③
.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海一模)觀察數(shù)列:
①1,-1,1,-1,…;
②正整數(shù)依次被4除所得余數(shù)構成的數(shù)列1,2,3,0,1,2,3,0,…;
③an=tan
3
,n=1,2,3,…
(1)對以上這些數(shù)列所共有的周期特征,請你類比周期函數(shù)的定義,為這類數(shù)列下一個周期數(shù)列的定義:對于數(shù)列{an},如果
存在正整數(shù)T
存在正整數(shù)T
,對于一切正整數(shù)n都滿足
an+T=an
an+T=an
成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列;
(2)若數(shù)列{an}滿足an+2=an+1-an,n∈N*,Sn為{an}的前n項和,且S2=2008,S3=2010,證明{an}為周期數(shù)列,并求S2008;
(3)若數(shù)列{an}的首項a1=p,p∈[0,
1
2
),且an+1=2an(1-an),n∈N*,判斷數(shù)列{an}是否為周期數(shù)列,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練18練習卷(解析版) 題型:填空題

若數(shù)列{n(n+4) n}中的最大項是第k,k=    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:浙江 題型:填空題

若數(shù)列{n(n+4)(
2
3
)
n
}
中的最大項是第k項,則k=______.

查看答案和解析>>

同步練習冊答案