11.給出以下四個命題:①若a>b,則$\frac{1}{a}$<$\frac{1}$;②若ac2>bc2,則a>b③若a>|b|,則a>b;④若a>b,則a2>b2.其中正確的是(  )
A.②④B.①③C.①②D.②③

分析 根據(jù)不等式的基本性質(zhì),逐一分析給定四個命題的真假,可得答案.

解答 解:①若a>0>b,則$\frac{1}{a}$>$\frac{1}$,故①錯誤;
②若ac2>bc2,則c2>0,則a>b,故②正確;
③若a>|b|,則a>b,故③正確;
④若a=1,b=-1,則a>b,但a2=b2.故④錯誤;
故選:D

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了不等式的基本性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的一個焦點為F(1,0)且離心率為$\frac{{\sqrt{3}}}{3}$
(1)求橢圓C的方程;
(2)若垂直于x軸的動直線與橢圓交于A,B兩點,直線l:x=3與x軸交于點N,直線AF與BN交于點M,求證:點M恒在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合U={1,2,3,4,5,6},A={2,4,6},求∁UA={1,3,5} .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2sin(ωx-$\frac{5π}{6}$)+2$\sqrt{3}$sinωx的最小正周期T=π
(1)求出ω的值;
(2)求f(x)得單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,該幾何體是由一個直三棱柱ADE-BCF和一個正四棱錐P-ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P-ABCD的高h(yuǎn),使得二面角C-AF-P的余弦值是$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若不等式a2+8b2≥λb(a+b)對任意的實數(shù)a,b均成立,則實數(shù)λ的取值范圍為( 。
A.[-8,4]B.[-4,8]C.[-6,2]D.[-2,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若函數(shù)f(x)=(k+3)ax+3-b(a>0,且a≠1)是指數(shù)函數(shù),
(1)求k,b的值;
(2)求解不等式f(2x-7)>f(4x-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列各式的值:
(Ⅰ)${(\sqrt{2\sqrt{2}})^{\frac{4}{3}}}-4×{(\frac{16}{49})^{-\frac{1}{2}}}-\root{4}{2}×{8^{0.25}}+{(-2015)^0}$
(Ⅱ)log3$\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$-ln1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某地為了了解地區(qū)100000戶家庭的用電情況,采用分層抽樣的方法抽取了500戶家庭的月均用電量,并根據(jù)這500戶家庭的月均用電量畫出頻率分布直方圖(如圖),則該地區(qū)100000戶家庭中月均用電度數(shù)在[70,80]的家庭大約有12000戶.

查看答案和解析>>

同步練習(xí)冊答案