5.觀察下列各式:m+n=1,m2+n2=3,m3+n3=4,m4+n4=7,m5+n5=11,…,則m9+n9=( 。
A.29B.47C.76D.123

分析 由題意可得到可以發(fā)現(xiàn)從第三項(xiàng)開(kāi)始,右邊的數(shù)字等于前兩項(xiàng)的右邊的數(shù)字之和,問(wèn)題得以解決.

解答 解:∵1+3=4,
3+4=7,
4+7=11,
7+11=18,
11+18=29,
18+29=47,
29+47=76…
∴可以發(fā)現(xiàn)從第三項(xiàng)開(kāi)始,右邊的數(shù)字等于前兩項(xiàng)的右邊的數(shù)字之和,
∴m9+n9=76,
故選:C.

點(diǎn)評(píng) 本題考查了歸納推理的問(wèn)題,關(guān)鍵是找到其數(shù)字的變化規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(Ⅰ)設(shè)點(diǎn)M為棱PD中點(diǎn),求證:EM∥平面ABCD;
(Ⅱ)線段PD上是否存在一點(diǎn)N,使得直線BN與平面PCD所成角的正弦值等于$\frac{2}{5}$?若存在,試確定點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,由f(1)=1>$\frac{1}{2}$,f(3)>1,f(7)>$\frac{3}{2}$,f(15)>2,…
(1)你能得到怎樣的結(jié)論?并證明;
(2)是否存在正數(shù)T,使對(duì)任意的正整數(shù)n,有f(n)<T成立?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知a>0,b>0,c>0,則$\frac{{ab+2ac+3\sqrt{2}bc}}{{{a^2}+{b^2}+4{c^2}}}$的最大值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.1-$\frac{1}{2}$=$\frac{1}{2}$…①,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{1}{3}$+$\frac{1}{4}$…②,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$…③,…
根據(jù)以上事實(shí),由歸納推理可得:
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$+$\frac{1}{7}$-$\frac{1}{8}$=$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$
當(dāng)n∈N*時(shí),1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$…+$\frac{1}{200n-1}$-$\frac{1}{200n}$=$\frac{1}{100n+1}$+…+$\frac{1}{200n-1}$+$\frac{1}{200n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2sin(2x-$\frac{π}{6}$)+a (a∈R,a為常數(shù))
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)若f(x)在區(qū)間[0,$\frac{π}{2}$]最小值為3,求a的值;
(3)若函數(shù)f(x)的圖象向左平移m(m>0)個(gè)單位后,得到函數(shù)g(x)的圖象關(guān)于y軸對(duì)稱,求實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知$\overrightarrow a$=(4,8),$\overrightarrow b$=(x,4),且$\overrightarrow a∥\overrightarrow b$,則x的值是( 。
A.2B.-8C.-2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若等差數(shù)列{an}的通項(xiàng)公式是an=2n+5,則此數(shù)列( 。
A.是公差為5的等差數(shù)列B.是公差為3的等差數(shù)列
C.是公差為2的等差數(shù)列D.是公差為7的等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C對(duì)應(yīng)的三邊長(zhǎng)分別為a,b,c,且滿足c(acosB-$\frac{1}{2}$b)=a2-b2
(1)求角A;
(2)若a=$\sqrt{3}$,b-c=1,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案