14.已知正四棱錐的底面邊長為1,高為1,則這個正四棱錐的外接球的表面積為$\frac{9π}{4}$.

分析 先畫出圖形,正四棱錐外接球的球心在它的高上,然后根據(jù)勾股定理解出球的半徑,最后根據(jù)球的面積公式解之即可.

解答 解:正四棱錐P-ABCD的外接球的球心在它的高PO1上,
記球心為O,PO=AO=R,PO1=1,OO1=R-1,或OO1=1-R(此時O在PO1的延長線上),
在Rt△AO1O中,R2=$\frac{1}{2}$+(R-1)2得R=$\frac{3}{4}$,
∴球的表面積S=$\frac{9π}{4}$.
故答案為$\frac{9π}{4}$.

點評 本題主要考查球的表面積,球的內(nèi)接體問題,考查計算能力和空間想象能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F(xiàn)、G分別是AC、BC中點.
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E-AB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0))的右焦點為(2$\sqrt{2}$,0),且過點c>1.
(Ⅰ)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓Γ交于不同兩點A、B,且|AB|=3$\sqrt{2}$.若點P(x0,2)滿足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是首項為-$\frac{1}{100}$的等比數(shù)列,且$\frac{_{6}}{_{7}}$=$\frac{1}{2}$,10a1•b2=-1,2a1•b2+5a2•b3=-2
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{an+$\frac{1}{_{n}}$}的前n項和Sn;
(3)求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)計算:27${\;}^{\frac{2}{3}}$-$\sqrt{(3-π)^{2}}$+lg5+lg2;
(2)化簡:tan$\frac{5π}{4}$+sin($\frac{π}{2}$+α)-cos(-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=cos2x,若將其圖象沿x軸向左平移a個單位(a>0),所得圖線關(guān)于原點對稱,則實數(shù)a的最小值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.指數(shù)函數(shù)y=ax(a>0,a≠1)的反函數(shù)圖象過點(9,2),則a=(  )
A.3B.2C.9D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{a}$=(-1,3),$\overrightarrow$=(2,y),若$\overrightarrow{a}∥\overrightarrow$,則實數(shù)y的值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,橢圓C0:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,a,b為常數(shù)),動圓C1:x2+y2=t12,b<t1<a..點A1,A2分別為C0的左,右頂點,C1與C0相交于A,B,C,D四點.
(1)若C1經(jīng)過C0的焦點,且C0離心率為$\frac{\sqrt{6}}{3}$,求∠DOC的大小;
(2)設(shè)動圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若t12+t22=a2+b2,證明:矩形ABCD與矩形A′B′C′D′的面積相等.

查看答案和解析>>

同步練習(xí)冊答案