某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與醫(yī)院抄錄1至6月份每月10號的晝夜溫差情況與患感冒而就診的人數(shù),得到如下資料:
日 期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
晝夜溫差x(℃) |
10 |
11 |
13 |
12 |
8 |
6 |
就診人數(shù)y(個) |
22 |
25 |
29 |
26 |
16 |
12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關于x的線性回歸方程
=bx+a;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考公式:線性回歸方程的系數(shù)公式為b=
n | | i-1 | xiyi-n |
n | | i-1 | x | 2 i | -n |
=
n | | i-1 | (xi-)(yi-) |
n | | i-1 | (xi-)2 |
,a=
-b.