2.已知集合A={x|0<log2(3x-5)<2},集合$B=\left\{{x\left|{sinx>\frac{{\sqrt{3}}}{2}}\right.}\right\}$,那么A∩B=( 。
A.$({2,\frac{2π}{3}})$B.(2,3)C.$({2,\frac{5π}{6}})$D.$({2,\frac{3π}{4}})$

分析 先分別求出集合A和集合B,由此利用交集定義能求出A∩B.

解答 解:∵集合A={x|0<log2(3x-5)<2}={x|2<x<3},
集合$B=\left\{{x\left|{sinx>\frac{{\sqrt{3}}}{2}}\right.}\right\}$={x|$\frac{π}{3}$+2kπ<x<$\frac{2π}{3}+2kπ$,k∈Z},
∴A∩B={x|2<x<$\frac{2π}{3}$}=(2,$\frac{2π}{3}$).
故選:A.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)函數(shù)和三角函烽的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3=5,a5=3,則an=8-n,S7=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知在△ABC中,角A,B,C對(duì)應(yīng)的邊分別為a,b,c,且a=2,b=3,cosB=$\frac{1}{3}$.
(1)求邊c的值;
(2)求cos(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.化簡(jiǎn)$\frac{tan12°-\sqrt{3}}{sin12°cos24°}$=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a=log${\;}_{\frac{1}{2}}$3,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=($\frac{1}{2}$)0.3,則(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=|lnx|-ax在區(qū)間(0,3]上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{ln3}{3}$)B.(0,$\frac{ln3}{3}$]C.($\frac{ln3}{3}$,$\frac{1}{e}$)D.[$\frac{ln3}{3}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知A(-1,0),B(2,3),則|AB|=(  )
A.3B.$\sqrt{2}$C.$3\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知?jiǎng)訄AC過(guò)定點(diǎn)F($\frac{1}{2}$,0),且始終保持與直線l:x=-$\frac{1}{2}$相切.
(1)求⊙C的圓心的軌跡方程;
(2)設(shè)定點(diǎn)A(a,0),點(diǎn)Q為曲線C上動(dòng)點(diǎn),求點(diǎn)A到點(diǎn)Q距離的最小值d(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知x,y都是區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]內(nèi)任取的一個(gè)實(shí)數(shù),則使得y≤cosx的取值的概率是(  )
A.$\frac{4}{{π}^{2}}$B.$\frac{2}{π}$+$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{2}{{π}^{2}}$+$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案