【題目】設(shè)有一組圓,下列四個命題:①存在一條定直線與所有的圓均相切;②存在一條定直線與所有的圓均相交;③存在一條定直線與所有的圓均不相交;④所有的圓均不經(jīng)過原點;其中真命題的個數(shù)為( )
A.1B.2C.3D.4
【答案】B
【解析】
根據(jù)圓的方程找出圓心坐標(biāo),發(fā)現(xiàn)滿足條件的所有圓的圓心在一條直線上,所以這條直線與所有的圓都相交,②正確;根據(jù)圖象可知這些圓互相內(nèi)含,不存在一條定直線與所有的圓均相切,不存在一條定直線與所有的圓均不相交,所以①③錯;利用反證法,假設(shè)經(jīng)過原點,將代入圓的方程,因為左邊為奇數(shù),右邊為偶數(shù),故不存在使上式成立,假設(shè)錯誤,則圓不經(jīng)過原點,④正確.
解:根據(jù)題意得:圓心,圓心在直線上,故存在直線與所有圓都相交,選項②正確;
考慮兩圓的位置關(guān)系,
圓:圓心,半徑為,
圓:圓心,,即,半徑為,
兩圓的圓心距,
兩圓的半徑之差,
任取或2時,,含于之中,選項①錯誤;
若取無窮大,則可以認(rèn)為所有直線都與圓相交,選項③錯誤;
將帶入圓的方程,則有,即,
因為左邊為奇數(shù),右邊為偶數(shù),故不存在使上式成立,即所有圓不過原點,選項④正確.
則正確命題是②④.
故選:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:,(a>b>0)過點(1,)且離心率為.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的右頂點為P,過定點(2,﹣1)的直線l:y=kx+m與橢圓C相交于異于點P的A,B兩點,若直線PA,PB的斜率分別為k1,k2,求k1+k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線與曲線兩交點所在直線的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,直線與軸的交點為,與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,若過且傾斜角為的直線交于,兩點,滿足.
(1)求拋物線的方程;
(2)若為上動點,,在軸上,圓內(nèi)切于,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若為單調(diào)函數(shù),求a的取值范圍;
(2)若函數(shù)僅一個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在橢圓上E:(),點為平面上一點,O為坐標(biāo)原點.
(1)當(dāng)取最小值時,求橢圓E的方程;
(2)對(1)中的橢圓E,P為其上一點,若過點的直線l與橢圓E相交于不同的兩點S和T,且滿足(),求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓在圓:外部且與圓相切,同時還在圓:內(nèi)部與圓相切.
(1)求動圓圓心的軌跡方程;
(2)記(1)中求出的軌跡為,與軸的兩個交點分別為、,是上異于、的動點,又直線與軸交于點,直線、分別交直線于、兩點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步優(yōu)化教育質(zhì)量平臺,更好的服務(wù)全體師生,七天網(wǎng)絡(luò)從甲、乙兩所學(xué)校各隨機(jī)抽取100名考生的某次“四省八!睌(shù)學(xué)考試成績進(jìn)行分析,分別繪制的頻率分布直方圖如圖所示.
為了更好的測評各個學(xué)校數(shù)學(xué)學(xué)科的教學(xué)質(zhì)量,該公司依據(jù)每一位考生的數(shù)學(xué)測試分?jǐn)?shù)將其劃分為“,,”三個不同的等級,并按照不同的等級,設(shè)置相應(yīng)的對學(xué)校數(shù)學(xué)學(xué)科教學(xué)質(zhì)量貢獻(xiàn)的積分,如下表所示.
測試分?jǐn)?shù)的范圍 | 分?jǐn)?shù)對應(yīng)的等級 | 貢獻(xiàn)的積分 |
等 | 1分 | |
等 | 2分 | |
等 | 3分 |
(1)用樣本的頻率分布估計總體的頻率分布,若將甲學(xué)?忌臄(shù)學(xué)測試等級劃分為“等”和“非等”兩種,利用分層抽樣抽取10名考生,再從這10人隨機(jī)抽取3人,求3人中至少1人數(shù)學(xué)測試為“等”的概率;
(2)視頻率分布直方圖中的頻率為概率,用樣本估計總體,若從乙學(xué)校全體考生中隨機(jī)抽取3人,記3人中數(shù)學(xué)測試等級為“等”的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(3)根據(jù)考生的數(shù)學(xué)測試分?jǐn)?shù)對學(xué)校數(shù)學(xué)學(xué)科教學(xué)質(zhì)量貢獻(xiàn)的積分規(guī)則,分別記甲乙兩所學(xué)校數(shù)學(xué)學(xué)科質(zhì)量的人均積分為和,用樣本估計總體,求和的估計值,并以此分析,你認(rèn)為哪所學(xué)校本次數(shù)學(xué)教學(xué)質(zhì)量更加出色?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在x軸上的橢圓,離心率,且經(jīng)過拋物線的焦點.若過點的直線斜率不等于零與橢圓交于不同的兩點E、在B、F之間,
求橢圓的標(biāo)準(zhǔn)方程;
求直線l斜率的取值范圍;
若與面積之比為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com