已知P為拋物線y2=4x上的一點,記P到此拋物線的準(zhǔn)線的距離為d1,P到直線x+2y+12=0的距離為d2,則d1+d2的最小值為
 
考點:拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:如圖點P到準(zhǔn)線的距離等于點P到焦點F的距離,過焦點F作直線x+2y+10=0的垂線,此時d1+d2最小,根據(jù)拋物線方程求得F,進(jìn)而利用點到直線的距離公式求得d1+d2的最小值.
解答: 解:如圖點P到準(zhǔn)線的距離等于點P到焦點F的距離,
過焦點F作直線x+2y+12=0的垂線,此時d1+d2最小,
∵F(1,0),則d1+d2=
|1+12|
1+22
=
13
5
5

故答案為:
13
5
5
點評:本題主要考查了拋物線的簡單性質(zhì),兩點距離公式的應(yīng)用.解此類題設(shè)宜先畫出圖象,進(jìn)而利用數(shù)形結(jié)合的思想解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈(0,1)時,不等式(
1
2
3ax-1(
1
2
)ax-x2
恒成立,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=4x和點P(6,4),點A為第一象限內(nèi)的點且在直線l上,直線PA交x軸正半軸于點B,
(1)當(dāng)OP⊥AB時,求AB所在直線的直線方程;
(2)求△OAB面積的最小值,并求當(dāng)△OAB面積取最小值時的B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“任意滿足x2>1的實數(shù)x,都有x>1”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a2+b2-c2=-ab,那么角∠C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3|2x|-9x5+1
9|x|+1
(x∈R)的最大值為M,最小值為m,則M+m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:lg50+lg2lg5+lg22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x-y≤0
x+y-2≤0
2x+y≥0
,則z=-x2-y的最小值是( 。
A、-8B、-2C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x+
a
x
(a>0)在[2,+∞)上有最小值,且不是單調(diào)函數(shù),則a的一個可能值是
 

查看答案和解析>>

同步練習(xí)冊答案