分析 試驗包含的所有事件是從4個人安排兩人,共12種,其中事件“星期六安排一名男生、星期日安排一名女生”包含4種,再由概率公式得到結(jié)果.
解答 解:由題意知本題是一個古典概型,
試驗包含的所有事件是從4個人安排兩人,總共有C42A22=12種.
其中期六安排一名男生、星期日安排一名女生,總共有C21C21=4種,
∴其中至少有1名女生的概率P=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.
點評 古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以列舉出所有事件,概率問題同其他的知識點結(jié)合在一起,實際上是以概率問題為載體.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 4 | C. | -6 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3-ln2}{2}$ | B. | $\frac{5-ln2}{2}$ | C. | $\frac{3+ln2}{2}$ | D. | $\frac{5+ln2}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com