【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知sin2 .
(Ⅰ) 求角A的大;
(Ⅱ) 若b+c=2,求a的取值范圍.
【答案】解:(Ⅰ)由已知得 ,
化簡得 ,
整理得 ,即 ,
由于0<B+C<π,則 ,
所以 .
(Ⅱ)根據(jù)余弦定理,得 =b2+c2+bc=b2+(2﹣b)2+b(2﹣b)=b2﹣2b+4=(b﹣1)2+3,
又由b+c=2,知0<b<2,可得3≤a2<4,
所以a的取值范圍是 .
【解析】(Ⅰ)由題意可得根據(jù)兩角和差的余弦公式展開,再根據(jù)公式的逆用可得cos(B+C)=,根據(jù)B+C的取值范圍可得 B + C =,故A = .
(Ⅱ)根據(jù)題意由余弦定理可得 a 2 =(b﹣1)2+3,由已知b+c=2可得0<b<2,利用二次函數(shù)在指定區(qū)間上的最值可得3≤a2<4,即得結果。
【考點精析】通過靈活運用正弦定理的定義和余弦定理的定義,掌握正弦定理:;余弦定理:;;即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.命題“x∈R,使得x2+2x+3<0”的否定是“x∈R,都有x2+2x+3>0”
C.a∈R,“ <1”是“a>1”的必要不充分條件
D.“若am2<bm2 , 則a<b”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,游樂場中的摩天輪勻速逆時針旋轉,每轉一圈需要6min,其中心O距離地面40.5m,摩天輪的半徑為40m,已知摩天輪上點P的起始位置在最低點處,在時刻t(min)時點P距離地面的高度為f(t)=Asin(ωt+φ)+h(A>0,ω>0,﹣π<φ<0,t≥0).
(Ⅰ)求f(t)的單調減區(qū)間;
(Ⅱ)求證:f(t)+f(t+2)+f(t+4)是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為 ,其離心率 ,點 為橢圓上的一個動點,△ 面積的最大值為 .
(1)求橢圓的標準方程;
(2)若 是橢圓上不重合的四個點, 與 相交于點 , 求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”: 2 = ,3 = ,4 = ,5 =
則按照以上規(guī)律,若8 = 具有“穿墻術”,則n=( )
A.7
B.35
C.48
D.63
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組有9名學生.若從9名學生中選取3人,則選取的3人中恰好有一個女生的概率是 .
(1)該小組中男女學生各多少人?
(2)9個學生站成一列隊,現(xiàn)要求女生保持相對順序不變(即女生 前后順序保持不變)重新站隊,問有多少種重新站隊的方法?(要求用數(shù)字作答)
(3)9名學生站成一列,要求男生必須兩兩站在一起,有多少種站隊的方法?(要求用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉化,相互統(tǒng)一的和諧美.定義:能夠將圓O的周長和面積同時等分成兩部分的函數(shù)稱為圓煌一個“太極函數(shù)”下列有關說法中:
①對圓O:x2+y2=1的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)f(x)=sinx+1是圓O:x2+(y﹣1)2=1的一個太極函數(shù);
③存在圓O,使得f(x)= 是圓O的太極函數(shù);
④直線(m+1)x﹣(2m+1)y﹣1=0所對應的函數(shù)一定是圓O:(x﹣2)2+(y﹣1)2=R2(R>0)的太極函數(shù).
所有正確說法的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓 : x2+y2+Dx+Ey+3=0 ,圓 關于直線 x+y-1=0對稱,圓心在第二象限,半徑為 .
(1)求圓 的方程;
(2)已知不過原點的直線 l 與圓 相切,且在 軸、 軸上的截距相等,求直線 l 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設全集U=R,集合M={x||x﹣ | },P={x|﹣1≤x≤4},則(UM)∩P等于( )
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3<x≤4}
D.{x|3≤x≤4}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com