3.已知向量$\overrightarrow{a}$與$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,且$\overrightarrow$⊥(2$\overrightarrow{a}$+$\overrightarrow$),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 根據(jù)向量垂直得出2$\overrightarrow{a}•\overrightarrow$+$\overrightarrow$2=0,從而得出$\overrightarrow{a}•\overrightarrow$=-2,利用向量的夾角公式計(jì)算夾角的余弦得出答案.

解答 解:∵|$\overrightarrow{a}$|=|$\overrightarrow$|=2,∴${\overrightarrow}^{2}$=4,
∵$\overrightarrow$⊥(2$\overrightarrow{a}$+$\overrightarrow$),∴2$\overrightarrow{a}•\overrightarrow$+$\overrightarrow$2=0,
∴$\overrightarrow{a}•\overrightarrow$=-2,
∴cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=-$\frac{1}{2}$,
∴<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{2π}{3}$.
故選C.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知方程$\frac{x^2}{k-3}+\frac{y^2}{2-k}=1$表示焦點(diǎn)在y軸上的雙曲線,則k的取值范圍為k<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.雙曲線x2-y2=1的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)f(x)=$\sqrt{3}$sinxcosx+sin2x的圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,再沿x軸向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則y=g(x)的一條對稱軸是( 。
A.$x=-\frac{π}{6}$B.$x=-\frac{π}{4}$C.$x=\frac{π}{3}$D.$x=\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知AD是△ABC內(nèi)角∠BAC的角平分線.
(1)用正弦定理證明:$\frac{AB}{AC}=\frac{DB}{DC}$;
(2)若∠BAC=120°,AB=2,AC=1,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知命題p:點(diǎn)M(x,y)滿足xcosθ+ysinθ=1,θ∈(0,2π],命題q:點(diǎn)N(x,y)滿足x2+y2=m2(m>0),若p是q的必要不充分條件,那么實(shí)數(shù)m的取值范圍是m≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.平面內(nèi)到定點(diǎn)F(0,1)和定直線l:y=-1的距離之和等于4的動(dòng)點(diǎn)的軌跡為曲線C,關(guān)于曲線C的幾何性質(zhì),給出下列四個(gè)結(jié)論:
①曲線C的方程為x2=4y;                                ②曲線C關(guān)于y軸對稱  
③若點(diǎn)P(x,y)在曲線C上,則|y|≤2;          ④若點(diǎn)P在曲線C上,則1≤|PF|≤4
其中,所有正確結(jié)論的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC中,已知AB=2,AC=6,∠BAC=60°,點(diǎn)D,E分別在邊AB,AC上,且$\overrightarrow{AB}$=2$\overrightarrow{AD}$,$\overrightarrow{AC}$=5$\overrightarrow{AE}$,
(1)若$\overrightarrow{BF}$=-$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{10}$$\overrightarrow{AC}$,求證:點(diǎn)F為DE的中點(diǎn);
(2)在(1)的條件下,求$\overrightarrow{BA}$•$\overrightarrow{EF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.九江氣象臺(tái)統(tǒng)計(jì),5月1日潯陽區(qū)下雨的概率為$\frac{4}{15}$,刮風(fēng)的概率為$\frac{2}{15}$,既刮風(fēng)又下雨的概率為$\frac{1}{10}$,設(shè)A為下雨,B為刮風(fēng),那么P(A|B)=(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{5}$D.$\frac{3}{8}$

查看答案和解析>>

同步練習(xí)冊答案