據(jù)預(yù)測中國未來10年期間的年均通貨膨脹率(物價(jià)平均水平的上漲幅度)為10%,已知某種商品,它的價(jià)格P(單位:元)與時(shí)間t(單位:年)有如下函數(shù)關(guān)系:P(t)=P0(1+10%)其中P0為t=0時(shí)的物價(jià),已知t=10時(shí),價(jià)格上漲的變化率則P(2)=(  )元

[  ]

A.

B.

C.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:人民教育出版社(實(shí)驗(yàn)修訂本) 高中數(shù)學(xué) 題型:

定義在(-1,1)上的奇函數(shù)f(x),在整個(gè)定義域上是減函數(shù),且f(1-a)+f(1-a2)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:人教B版(新課標(biāo)) 必修5 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且an與1的等差中項(xiàng)等于Sn與1的等比中項(xiàng).

(1)求a1的值及數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=21+an+(-1)n-1×2n+1λ,若數(shù)列{bn}是單調(diào)遞增數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:蘇教版(新課標(biāo)) 必修1 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①f(x)=2x;②f(x)=x2+1;

③f(x)=sinx+cosx;④f(x)=;⑤f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且對(duì)一切x1,x2均有|f(x1)-f(x2)|≤|x1+x2|.其中是“倍約束函數(shù)”的有________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:蘇教版(新課標(biāo)) 選修1-1 題型:

已知雙曲線的實(shí)軸在y軸上且焦距為8,則雙曲線的漸近線的方程為

[  ]

A.

B.

C.

y=±3x

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:人教A版(新課標(biāo)) 選修3-4 對(duì)稱與群 題型:

已知對(duì)任意平面向量=(x,y),把繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)角得到向量:=(xcos-ysin,xsin+ycos),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)角得到點(diǎn)P.

(1)已知平面內(nèi)點(diǎn)A(1,2),點(diǎn)B(-1,2,-2),把點(diǎn)B繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)后得到點(diǎn)P的坐標(biāo)是________.

(2)設(shè)平面內(nèi)曲線上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)后得到的點(diǎn)的軌跡方程是:________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

“x<0”是“ln(x+1)<0”的

[  ]

A.

充分不必要條件

B.

必要不充分條件

C.

充分必要條件

D.

既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

如圖,已知兩條拋物線E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),過原點(diǎn)O的兩條直線l1l2,l1與E1,E2分別交于A1,A2兩點(diǎn),l2與E1,E2分別交于B1,B2兩點(diǎn).

(1)證明:A1B1∥A2B2;

(2)過原點(diǎn)O作直線(異于l1,l2)與E1,E2分別交于C1,C2兩點(diǎn).記?A1B1C1與的△A2B2C2面積分別為S1與S2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

如圖,在平面直角坐標(biāo)系xOy中,F1、F2分別是橢圓的左、右焦點(diǎn),頂點(diǎn)B的坐標(biāo)為(0,b),連結(jié)BF2交橢圓于點(diǎn)A,過點(diǎn)Ax軸的垂線交橢圓于另一點(diǎn)C,連結(jié)F1C

(1)若點(diǎn)C的坐標(biāo)為(),且BF2,求橢圓的方程;

(2)F1CAB,求橢圓離心率e的值.

查看答案和解析>>

同步練習(xí)冊答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�