分別是橢圓的左,右焦點.
(1)若是橢圓在第一象限上一點,且,求點坐標;(5分)
(2)設過定點的直線與橢圓交于不同兩點,且為銳角(其中為原點),求直線的斜率的取值范圍.(7分)

(1);(2).

解析試題分析:(1)設,求點坐標,即要構(gòu)建關于的兩個方程,第一個方程可根據(jù)點在曲線上,點的坐標必須適合曲線的方程得到,即有,第二個方程可由通過坐標化得到,即有,聯(lián)立方程組,可解得點坐標;(2)求直線的斜率的取值范圍,即要構(gòu)建關于的不等式,可通過為銳角,轉(zhuǎn)化為不等關系,進而轉(zhuǎn)化為關于的不等式,解出的取值范圍.注意不要忽略,這是解析幾何中常犯的錯誤.
試題解析:(1)依題意有,所以,設,則由得:,即,又,解得,因為是橢圓在第一象限上一點,所以.                                                        5分
(2)設直線與橢圓交于不同兩點的坐標為、,
將直線代入,整理得: (),
,,
因為為銳角,所以,從而
整理得:,即,解得,
且()方程必須滿足:,解得,
因此有,所以直線的斜率的取值范圍為.         12分
考點:1.直線與橢圓的位置關系;2.方程與不等式思想,3.設而不求的思想與等價轉(zhuǎn)化思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

拋物線的準線經(jīng)過雙曲線的一個焦點,則雙曲線的離心率為   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

拋物線的頂點在原點,它的準線過雙曲線的一個焦點,并與
雙曲線的實軸垂直,已知拋物線與雙曲線的交點為,求拋物線的方程和雙曲線的方程.  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的對稱中心為原點,焦點在軸上,左右焦點分別為和,且||=2,離心率.
(1)求橢圓的方程;
(2)過的直線與橢圓相交于A,B兩點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線方程為,過點作直線與拋物線交于兩點,,過分別作拋物線的切線,兩切線的交點為.
(1)求的值;
(2)求點的縱坐標;
(3)求△面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

直線y=kx+b與曲線交于A、B兩點,記△AOB的面積為S(O是坐標原點).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,曲線的參數(shù)方程為為參數(shù),).
(1)寫出直線的直角坐標方程;
(2)求直線與曲線的交點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

無論為任何實數(shù),直線與雙曲線恒有公共點.
(1)求雙曲線的離心率的取值范圍;
(2)若直線過雙曲線的右焦點,與雙曲線交于兩點,并且滿足,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知拋物線的焦點為F,在第一象限中過拋物線上任意一點P的切線為,過P點作平行于軸的直線,過焦點F作平行于的直線交,若,則點P的坐標為         .

查看答案和解析>>

同步練習冊答案