【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5 ,b=5,求sinA.

【答案】
(1)

解:∵3cosAcosB+1=3sinAsinB+cos2C,

∴3(cosAcosB﹣sinAsinB)+1=cos2C,

可得:3cos(A+B)+1=cos2C,

∴﹣3cosC+1=2cos2C﹣1,

可得:2cos2C+3cosC﹣2=0,

可得:(2cosC﹣1)(cosC+2)=0,

∴解得:cosC= 或cosC=﹣2(舍去),

∵0<C<π,

∴∠C=


(2)

解:∵SABC= absinC=5 ,b=5,C= ,可得:a=4,

∵由余弦定理可得:c2=a2+b2﹣2abcosC=16+25﹣2× =21,可得:c= ,

∴由正弦定理可得:sinA= = =


【解析】(1)移項(xiàng),利用兩角和的余弦函數(shù)公式,三角形內(nèi)角和定理,二倍角的余弦函數(shù)公式,誘導(dǎo)公式化簡(jiǎn)已知可得2cos2C+3cosC﹣2=0,進(jìn)而解得cosC,結(jié)合范圍0<C<π,即可得解C的值.(2)由已知利用三角形面積公式可求a,由余弦定理可得c的值,進(jìn)而利用正弦定理即可解得sinA的值.
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代一部重要的數(shù)學(xué)著作,書(shū)中有如下問(wèn)題:“今有良馬與駑馬發(fā)長(zhǎng)安,至齊.齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里,駑馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬,問(wèn)幾何日相逢.”其大意為:“現(xiàn)在有良馬和駑馬同時(shí)從長(zhǎng)安出發(fā)到齊去,已知長(zhǎng)安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”試確定離開(kāi)長(zhǎng)安后的第天,兩馬相逢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,斜三棱柱ABC﹣A1B1C1的側(cè)面AA1C1C是菱形,側(cè)面ABB1A1⊥側(cè)面AA1C1C,A1B=AB=AA1=2,△AA1C1的面積為 ,且∠AA1C1為銳角.
(I) 求證:AA1⊥BC1
(Ⅱ)求銳二面角B﹣AC﹣C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中內(nèi)動(dòng)點(diǎn)P(x,y)到圓F:x2+(y﹣1)2=1的圓心F的距離比它到直線(xiàn)y=﹣2的距離小1.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡為曲線(xiàn)E,過(guò)點(diǎn)F的直線(xiàn)l的斜率為k,直線(xiàn)l交曲線(xiàn)E于A,B兩點(diǎn),交圓F于C,D兩點(diǎn)(A,C兩點(diǎn)相鄰).
①若 =t ,當(dāng)t∈[1,2]時(shí),求k的取值范圍;
②過(guò)A,B兩點(diǎn)分別作曲線(xiàn)E的切線(xiàn)l1 , l2 , 兩切線(xiàn)交于點(diǎn)N,求△ACN與△BDN面積之積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題 方程 有兩個(gè)不相等的負(fù)實(shí)根,

命題 不等式 的解集為 ,

(1)若為真命題,求 的取值范圍.

(2)若 為真命題, 為假命題,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知),其導(dǎo)函數(shù)為,設(shè),則_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,點(diǎn)Q為對(duì)角面A1BCD1內(nèi)一動(dòng)點(diǎn),點(diǎn)M、N分別在直線(xiàn)ADAC上自由滑動(dòng),直線(xiàn)DQMN所成角的最小值為θ,則下列結(jié)論中正確的是( 。

A. θ=15°,則點(diǎn)Q的軌跡為橢圓的一部分

B. θ=30°,則點(diǎn)Q的軌跡為橢圓的一部分

C. θ=45°,則點(diǎn)Q的軌跡為橢圓的一部分

D. θ=60°,則點(diǎn)Q的軌跡為橢圓的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)C的方程為y=ax2(a<0),過(guò)拋物線(xiàn)C上一點(diǎn)P(x0 , y0)(x0≠0)作斜率為k1 , k2的兩條直線(xiàn)分別交拋物線(xiàn)C于A(x1 , y1)B(x2 , y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿(mǎn)足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求拋物線(xiàn)C的焦點(diǎn)坐標(biāo)和準(zhǔn)線(xiàn)方程;
(Ⅱ)設(shè)直線(xiàn)AB上一點(diǎn)M,滿(mǎn)足 ,證明線(xiàn)段PM的中點(diǎn)在y軸上;
(Ⅲ)當(dāng)λ=1時(shí),若點(diǎn)P的坐標(biāo)為(1,﹣1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x)是定義在(0,+∞)上單調(diào)函數(shù),且對(duì)x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實(shí)數(shù)解所在的區(qū)間是(
A.(0,
B.( ,1)
C.(1,e)
D.(e,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案