【題目】已知拋物線 的焦點(diǎn)也是橢圓 )的一個(gè)焦點(diǎn), 的公共弦長(zhǎng)為.

(Ⅰ)求的方程

(Ⅱ)過(guò)點(diǎn)的直線相交于, 兩點(diǎn),與相交于 兩點(diǎn),且 同向.若求直線的斜率;

【答案】(1)(2)

【解析】試題分析:(Ⅰ)由拋物線與橢圓共焦點(diǎn)可得,再由公共弦長(zhǎng)可得公共點(diǎn)坐標(biāo)代入與前式聯(lián)立可得的值;(Ⅱ)設(shè), , , ,設(shè)直線的斜率為,則直線的方程為

與雙曲線聯(lián)立,利用韋達(dá)定理,將轉(zhuǎn)化為關(guān)于的方程,解可得直線的斜率. 試題解析:解:(1)由拋物線 的焦點(diǎn),所以,又由的公共弦長(zhǎng)為,得公共點(diǎn)坐標(biāo),所以,解得

(2)設(shè) ,

,得,所以

設(shè)直線的斜率為,則直線的方程為

, ,

,

將②③代入①,解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知cos(π+α) = ,且 <α< ,求sin α與cos α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)單位有職工80人,其中業(yè)務(wù)人員56人,管理人員8人,服務(wù)人員16人,為了解職工的某種情況,決定采取分層抽樣的方法。抽取一個(gè)容量為10的樣本,每個(gè)管理人員被抽到的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),且的導(dǎo)數(shù)為.

(Ⅰ)若是定義域內(nèi)的增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)若方程有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一盒中裝有各色球12只,其中5個(gè)紅球,4個(gè)黑球,2個(gè)白球,1個(gè)綠球;從中隨機(jī)取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大學(xué)生趙敏利用寒假參加社會(huì)實(shí)踐,對(duì)機(jī)械銷(xiāo)售公司7月份至12月份銷(xiāo)售某種機(jī)械配件的銷(xiāo)售量及銷(xiāo)售單價(jià)進(jìn)行了調(diào)查,銷(xiāo)售單價(jià)和銷(xiāo)售量之間的一組數(shù)據(jù)如下表所示:

月份

7

8

9

10

11

12

銷(xiāo)售單價(jià)(元)

9

9.5

10

10.5

11

8

銷(xiāo)售量(件)

11

10

8

6

5

14

(1)根據(jù)7至11月份的數(shù)據(jù),求出關(guān)于的回歸直線方程;

(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn)(1)中所得到的回歸直線方程是否理想?

(3)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)售量與銷(xiāo)售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷(xiāo)售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷(xiāo)售收入-成本).

 參考公式:回歸直線方程,其中,參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點(diǎn).F為PB中點(diǎn).
(1)求證:EF∥面ABC;
(2)求證:EF⊥面PAC;
(3)求三棱錐B﹣PAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足3an﹣2Sn﹣1=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn= ,數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 求f(n)= (n∈N+)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),直線.

(1)若直線與曲線相切,求切點(diǎn)橫坐標(biāo)的值;

(2)若函數(shù),求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案