10.若拋物線y2=2px的準(zhǔn)線經(jīng)過雙曲線x2-y2=2的右焦點,則p的值為(  )
A.-2B.-3C.-4D.-5

分析 先求出雙曲線x2-y2=2的右焦點,得到拋物線y2=2px的準(zhǔn)線,依據(jù)p的意義求出它的值.

解答 解:雙曲線x2-y2=2的右焦點為(2,0),故拋物線y2=2px的準(zhǔn)線為x=2,
∴-$\frac{p}{2}$=2,∴p=-4,
故選C.

點評 本題考查拋物線和雙曲線的簡單性質(zhì),以及拋物線方程y2=2px中p的意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)當(dāng)x=α?xí)r,函數(shù)f(x)=3sinx+cosx取得最大值,則tan2α=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=e2,g(x)=x2+ax-2a2+3a,(a∈R),記函數(shù)h(x)=g(x)•f(x).
(1)討論函數(shù)h(x)的單調(diào)性;
(2)試比較ef(x-2)與x的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{a+blnx}{x-1}$(a,b∈R)在點 (2,f (2)) 處切線的斜率為-$\frac{1}{2}$-ln 2,且函數(shù)過點(4,$\frac{1+2ln2}{3}$).
(Ⅰ)求a、b 的值及函數(shù) f (x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)=$\frac{k}{x}$(k∈N*),對任意的實數(shù)x0>1,都存在實數(shù)x1,x2滿足0<x1<x2<x0,使得f(x0)=f(x1)=f(x2),求k 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù) f (x)=ex(2x-m),(m∈R).
(1)若函數(shù) f (x)在(-1,+∞)上單調(diào)遞增,求實數(shù)m的取值范圍;
(2)當(dāng)曲線 y=f (x)在x=0處的切線與直線 y=x平行時,設(shè)h(x)=f (x)-ax+a,若存在唯一的整數(shù)x0使得h(x0)<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知等腰三角形ABC中,底邊BC=3,∠BAC=120°,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,若P是BC邊上的中點,則$\overrightarrow{AP}$•$\overrightarrow{AD}$的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f'(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(0)=1,且$f(x)=\frac{1}{3}f'(x)-1$,則4f(x)>f'(x)的解集為( 。
A.$(\frac{ln4}{3},+∞)$B.$(\frac{ln2}{3},+∞)$C.$(\frac{{\sqrt{3}}}{2},+∞)$D.$(\frac{{\sqrt{e}}}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線方程為$\frac{x^2}{{{m^2}+4}}-\frac{y^2}{b^2}=1$,若其過焦點的最短弦長為2,則該雙曲線的離心率的取值范圍是(  )
A.$(1,\frac{{\sqrt{6}}}{2}]$B.$[\frac{{\sqrt{6}}}{2},+∞)$C.$(1,\frac{{\sqrt{6}}}{2})$D.$(\frac{{\sqrt{6}}}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,以正四棱錐V-ABCD的底面中心O為坐標(biāo)原點建立空間直角坐標(biāo)系O-xyz,其中Ox∥BC,Oy∥AB,E為VC中點,正四棱錐的底面邊長為2a,高為h,且有cos<$\overrightarrow{BE}$,$\overrightarrow{DE}$>=-$\frac{15}{49}$.
(1)求$\frac{h}{a}$的值;
(2)求二面角B-VC-D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案