將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),求:
(Ⅰ)兩數(shù)之和為8的概率;
(Ⅱ)兩數(shù)之和是3的倍數(shù)的概率.

解:將一顆骰子先后拋擲2次,含有36個(gè)等可能基本事件,
(Ⅰ)記“兩數(shù)之和為8”為事件A,則事件A中含有(2,6),(3,5),(4,4),(5,3),(6,2)共5個(gè)基本事件,
故兩數(shù)之和為8的概率為:P(A)=
(Ⅱ)記“兩數(shù)之和是3的倍數(shù)”為事件B,則事件B中含有
(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3),(6,6)共12個(gè)基本事件,
故兩數(shù)之和是3的倍數(shù)的概率為:P(B)==
分析:由題意可知總的基本事件的個(gè)數(shù)有36個(gè),通過列舉的方式分別可得(Ⅰ)兩數(shù)之和為8(Ⅱ)兩數(shù)之和是3的倍數(shù)所包含的基本事件數(shù),由概率公式可得.
點(diǎn)評(píng):本題考查古典概型的求解,列舉對(duì)基本事件是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),問:
(1)兩數(shù)之和為7的概率;
(2)兩數(shù)之積是6的倍數(shù)的概率.
(3)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y,求點(diǎn)(x,y)滿足|x-y|=4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),求:
(1)兩數(shù)之和為5的概率;
(2)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部的概率為
2
9
2
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),求:
(I)兩數(shù)之和為5的概率;
(II)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在區(qū)域Ω:
x>0
y>0
x-y-2>0
內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),求:
(1)兩數(shù)之和為6的概率;
(2)向上的點(diǎn)數(shù)不同的概率;
(3)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=25的內(nèi)部的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案