在△ABC中,角A,B,C所對的邊分別是a,b,c,已知c=1,C=
π
6

(Ⅰ)若a=
3
,求b的值;
(Ⅱ)求cosAcosB的取值范圍.
考點(diǎn):余弦定理
專題:三角函數(shù)的求值
分析:(Ⅰ)利用余弦定理列出關(guān)系式,將a,c,以及C度數(shù)代入,即可求出b的值;
(Ⅱ)由C的度數(shù)得到A+B的度數(shù),用A表示出B代入cosAcosB中,利用兩角和與差的余弦函數(shù)公式化簡,整理后化為一個角的正弦函數(shù),根據(jù)A的范圍求出這個角的范圍,利用正弦函數(shù)的值域即可確定出范圍.
解答: 解:(Ⅰ)∵c=1,C=
π
6
,a=
3
,
∴由余弦定理c2=a2+b2-2abcosC,即1=3+b2-3b,
整理得:b2-3b+2=0,
解得:b=1或b=2;
(Ⅱ)cosAcosB=cosA•cos(
6
-A)
=cosA(-
3
2
cosA+
1
2
sinA)
=-
3
2
cos2A+
1
2
sinAcosA
=-
3
4
+
1
4
sin2A-
3
4
cos2A
=-
3
4
+
1
2
sin(2A-
π
3
),
∵0<A<
6
,即-
π
3
<2A-
π
3
3
,
∴-
3
2
<sin(2A-
π
3
)≤1,
則cosAcosB的取值范圍是(-
3
2
,
1
2
-
3
4
].
點(diǎn)評:此題考查了余弦定理,以及兩角和與差的正弦、余弦函數(shù)公式,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3ax2+2bx-a2(a>0),設(shè)x1,x2(x1≠x2)為函數(shù)f(x)的兩個零點(diǎn).
(1)若x1=-1,x2=2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若|x1|+|x2|=2,求實(shí)數(shù)b的最大值;
(3)若x1<x<x2,且x2=a,g(x)=f(x)-a(x-x1),求證:
|g(x)|
a
-
3
4
a2-a≤
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=3,前n項和Sn滿足:Sn-Sn-1=51,Sn=240,n>3,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個正數(shù)a,b,c滿足a≤b+c≤2a,b≤a+c≤2b,則
b
a
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x+y≥3
y≤3
x≤3
,則z=5-x2-y2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“p:?x∈(1,
5
2
),使不等式tx2+2x-3>0有解為真命題,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+2,則f[f(x)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
y2
4
-
x2
2
=1
的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“|x|≥2”是“x>3”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案