【題目】已知函數(shù).
(1)設(shè)時(shí),求的導(dǎo)函數(shù)的遞增區(qū)間;
(2)設(shè) ,求的單調(diào)區(qū)間;
(3)若 對(duì) 恒成立,求的取值范圍.
【答案】(1);
(2)當(dāng)時(shí),的單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間,
當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;
(3)
【解析】
(1)將代入函數(shù),求出,即,再求出,進(jìn)而求出的單調(diào)遞增區(qū)間;
(2)對(duì)求導(dǎo),討論的取值范圍,求出的單調(diào)區(qū)間;
(3)分離參數(shù),不等式 對(duì) 恒成立轉(zhuǎn)化為恒成立,構(gòu)造新的函數(shù),求出的最大值,從而求得的取值范圍.
解:(1)
時(shí),,
,
令,
則,
令,得,
的單調(diào)遞增區(qū)間為;
(2)
,
若,則恒成立,在單調(diào)遞減;
若,令,得,單調(diào)遞增,
令,得,單調(diào)遞減.
綜上所述,
當(dāng)時(shí),的單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間;
當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;
(3)對(duì)恒成立可轉(zhuǎn)化為恒成立,
設(shè),,
則當(dāng)時(shí),,單調(diào)遞增,
當(dāng)時(shí),,單調(diào)遞減,
,
,即的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過點(diǎn)任作一條直線與圓:相交于兩點(diǎn)A,B.問:是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在極大值,且極大值為1,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知8件不同的產(chǎn)品中有3件次品,現(xiàn)對(duì)它們一一進(jìn)行測試,直至找到所有次品.
(1)若在第5次測試時(shí)找到最后一件次品,則共有多少種不同的測試方法?
(2)若至多測試5次就能找到所有次品,則共有多少種不同的測試方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知,.
(1)求的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)令,,證明:對(duì)任意,均有(要求不得使用數(shù)學(xué)歸終法).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),求證:
(1)在區(qū)間存在唯一極大值點(diǎn);
(2)在上有且僅有2個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.
(1)求一件手工藝品質(zhì)量為B級(jí)的概率;
(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷,利潤記為100元.
①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;
②記1件手工藝品的利潤為X元,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在中,內(nèi)角對(duì)邊的邊長分別是,已知,.
(Ⅰ)若的面積等于,求;
(Ⅱ)若,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com