1.計算題
(1)$\frac{1-2i}{3+4i}$
(2)設(shè)復數(shù)z滿足i(z-4)=3+2i(i是虛數(shù)單位),求z.

分析 (1)根據(jù)復數(shù)的運算性質(zhì)化簡即可;(2)分離出z,根據(jù)復數(shù)的運算性質(zhì)計算即可.

解答 解:(1)$\frac{1-2i}{3+4i}$=$\frac{(1-2i)(3-4i)}{(3+4i)(3-4i)}$=-$\frac{5}{7}$-$\frac{10}{7}$i;
(2)∵i(z-4)=3+2i,
∴z-4=$\frac{3+2i}{i}$,
∴z=$\frac{(3+2i)i}{-1}$+4=6-3i.

點評 本題考查了復數(shù)的運算性質(zhì),考查復數(shù)的化簡求值問題,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)區(qū)間D=[-3,3],定義在D上的函數(shù)f(x)=ax3+bx+1(a>0,b∈R),集合A={a|?x∈D,f(x)≥0}.???
(1)若b=$\frac{1}{6}$,求集合A;
(2)設(shè)常數(shù)b<0?
         ①討論f(x)的單調(diào)性;
         ②若b<-1,求證:A=∅.??

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知正數(shù)數(shù)列{an}的前n項和Sn,且an2+an-2Sn=0.
( I)求a1,a2的值;
( II)求此數(shù)列的通項an與前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設(shè)$|\overrightarrow{OA}|=1,|\overrightarrow{OB}|=2$,$\overrightarrow{OA}•\overrightarrow{OB}=0$,$\overrightarrow{OP}=λ\overrightarrow{OA}+\frac{μ}{2}\overrightarrow{OB}$,且λ+μ=1,則$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范圍是$(-\frac{{\sqrt{2}}}{2},1]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.數(shù)列{an}的通項公式為${a_n}={n^2}$,前n項和記為Sn
(1)求S1,S2,S3
(2)用數(shù)學歸納法證明:${S_n}=\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.曲線$y=\frac{lnx}{x}$在x=1處的切線斜率等于1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知集合A={x||x-2|≤1},且A∩B=∅,則集合B可能是( 。
A.(-∞,-1)B.(1,2)C.{2,5}D.{x|x2≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在底面ABCD為平行四邊形的四棱柱ABCD-A1B1C1D1中,M是AC與BD的交點,若$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{{A_1}{D_1}}$=$\overrightarrow b$,$\overrightarrow{{A_1}A}$=$\overrightarrow c$,則下列向量中與$\overrightarrow{{B_1}M}$相等的向量是( 。
A.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$D.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.將函數(shù)$f(x)=2sin(\frac{x}{3}-\frac{π}{6})$的圖象向左平移$\frac{π}{4}$個單位,再向上平移2個單位,得到函數(shù)g(x)的圖象,則g(x)的解析式為( 。
A.$g(x)=2sin(\frac{x}{3}-\frac{π}{4})-2$B.$g(x)=2sin(\frac{x}{3}+\frac{π}{4})+2$C.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})+2$D.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})-2$

查看答案和解析>>

同步練習冊答案