【題目】設兩個非零向量 不共線.
(1)若 = + =2 +8 =3( ).求證:A,B,D三點共線;
(2)試確定實數(shù)k,使k + +k 共線.

【答案】
(1)

解:∵

= ,

共線

兩個向量有公共點B,

∴A,B,D三點共線.


(2)

共線,則存在實數(shù)λ,使得 =λ( ),

,

∵非零向量 不共線,

∴k﹣λ=0且1﹣λk=0,

∴k=±1.


【解析】(1)根據(jù)所給的三個首尾相連的向量,用其中兩個相加,得到兩個首尾相連的向量,根據(jù)表示這兩個向量的基底,得到兩個向量之間的共線關系,從而得到三點共線.(2)兩個向量共線,寫出向量共線的充要條件,進而得到關于實數(shù)k的等式,解出k的值,有兩個結果,這兩個結果都合題意.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調性;

(2)若直線與曲線都只有兩個交點,證明:這四個交點可以構成一個平行四邊形,并計算該平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合P={x|2x2﹣5x+2≤0},函數(shù)y=log2(ax2+2)的定義域為S
(1)若P∩S≠,求實數(shù)a的取值范圍
(2)若方程log2(ax2+2)=2在 上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知多面體如圖所示,底面為矩形,其中平面, ,若分別是的中心,其中.

1)證明: ;

2)若二面角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要得到函數(shù) 的圖象,只需將函數(shù)y=sin2x的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知
(1)求sin(α+β)的值;
(2)求cos(α﹣β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2cosxsin(x﹣ )+
(1)求函數(shù)f(x)的對稱軸方程;
(2)若方程sin2x+2|f(x+ )|﹣m+1=0在x∈ 上有三個實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2﹣2x﹣8≤0,x∈R},B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }.
(1)若A∩B=[2,4],求實數(shù)m的值;
(2)設全集為R,若ARB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某;锸抽L期以面粉和大米為主食,面食每100 g含蛋白質6個單位,含淀粉4個單位,售價0.5元,米食每100 g含蛋白質3個單位,含淀粉7個單位,售價0.4元,學校要求給學生配制盒飯,每盒盒飯至少有8個單位的蛋白質和10個單位的淀粉,問應如何配制盒飯,才既科學又費用最少?

查看答案和解析>>

同步練習冊答案