橢圓的焦點(diǎn)為數(shù)學(xué)公式,過(guò)點(diǎn)F1作直線與橢圓相交,被橢圓截得的最短的弦長(zhǎng)MN長(zhǎng)為數(shù)學(xué)公式,△MF2N的周長(zhǎng)為20,則橢圓的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:橢圓的離心率e=,根據(jù)題目條件,MN的長(zhǎng)度為橢圓通徑的長(zhǎng),△MF2N的周長(zhǎng)為4a,列方程即可解得a、c的值,進(jìn)而求得離心率.
解答:解:∵△MF2N的周長(zhǎng)=MF1+MF2+NF1+NF2=2a+2a=4a=20,∴a=5,
又由橢圓的幾何性質(zhì),過(guò)焦點(diǎn)的最短弦為通徑長(zhǎng)
∴MN==
∴b2=16,c2=a2-b2=9,
∴c=3
∴e==,
故選A.
點(diǎn)評(píng):本題主要考查了橢圓的定義,橢圓的幾何性質(zhì),此類(lèi)型題目要求我們應(yīng)掌握橢圓中特殊的線段的長(zhǎng)度,如通徑等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心為原點(diǎn),點(diǎn)F(1,0)是它的一個(gè)焦點(diǎn),直線l過(guò)點(diǎn)F與橢圓C交于A,B兩點(diǎn),且當(dāng)直線l垂直于x軸時(shí),OA•OB=
56

(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線l,使得在橢圓C的右準(zhǔn)線上可以找到一點(diǎn)P,滿(mǎn)足△ABP為正三角形.如果存在,求出直線l的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)已知長(zhǎng)方形EFCD,|EF|=2,|FC|=
2
2
.以EF的中點(diǎn)O為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系xOy.
(Ⅰ)求以E,F(xiàn)為焦點(diǎn),且過(guò)C,D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在(I)的條件下,過(guò)點(diǎn)F做直線l與橢圓交于不同的兩點(diǎn)A、B,設(shè)
FA
FB
,點(diǎn)T坐標(biāo)為(2,0),若λ∈[-2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(福建卷)、數(shù)學(xué)(理) 題型:044

如圖、橢圓的一個(gè)焦點(diǎn)是F(1,0),O為坐標(biāo)原點(diǎn).

(Ⅰ)已知橢圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角形,求橢圓的方程;

(Ⅱ)設(shè)過(guò)點(diǎn)F的直線l交橢圓于A、B兩點(diǎn).若直線l繞點(diǎn)F任意轉(zhuǎn)動(dòng),值有|OA|2+|OB|2|AB|2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試天津卷文數(shù) 題型:044

設(shè)橢圓=1(a>b>0)的左焦點(diǎn)為F,離心率為,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)A,B分別為橢圓的左右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若··=8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試天津卷理數(shù) 題型:044

設(shè)橢圓的左焦點(diǎn)為F,離心率為,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)A,B分別為橢圓的左右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若··=8,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案