4.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,π<|φ|<,2π)的部分圖象如圖所示,則φ的值為( 。
A.$\frac{5π}{3}$B.$\frac{4π}{3}$C.-$\frac{4π}{3}$D.-$\frac{5π}{3}$

分析 由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ的值

解答 解:據(jù)圖分析得$\frac{11π}{12}$-$\frac{5π}{12}$=$\frac{T}{2}$,
∴T=π,
又∵T=$\frac{2π}{ω}$,
∴ω=$\frac{2π}{2}$=2,
∴函數(shù)f(x)=sin(2x+φ),
∵sin(2×$\frac{5}{12}$π+φ)=1,π<|φ|<2π
∴φ=$\frac{5π}{3}$,
故選:A

點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ的值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)$y={2^{\frac{1-x}{1+x}}}$的值域是$(0,\frac{1}{2})∪(\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若x∈R,$\sqrt{y}$有意義且滿足x2+y2-4x+1=0,則$\frac{y}{x}$的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\overrightarrow{e_1},\overrightarrow{e_2}$為單位向量,且$\overrightarrow{e_1}$與$\overrightarrow{e_1}+2\overrightarrow{e_2}$垂直,則$\overrightarrow{e_1},\overrightarrow{e_2}$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b∈N*)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線右支上一點(diǎn),且|PF1|•|PF2|=4(4+b2),若|PF2|<4,則該雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定義在R上的偶函數(shù)f(x)在(-∞,0]單調(diào)遞減,且f(-$\frac{1}{3}$)=0,則滿足f(log${\;}_{\frac{1}{8}}$x)+f(log8x)>0的x的取值范圍是(  )
A.(0,+∞)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(0,$\frac{1}{8}$)∪($\frac{1}{2}$,2)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.目前,廣安市出租車的計(jì)價(jià)標(biāo)準(zhǔn)是:路程2km以內(nèi)(含2km)起步價(jià)8元收取,超過2km的路程按1.9km收取,但超過10km的路程需要加收50%的返空費(fèi)(即單價(jià)為1.9×(1+50%)=2.85元/km)(說明:現(xiàn)實(shí)中要計(jì)算等待時(shí)間,且最終付費(fèi)取整數(shù),本題在計(jì)算時(shí)都不予考慮)
(1)若0<x≤20,將乘客搭乘一次出租車的費(fèi)用用f(x)(單位:元)表示行程x(單位:km)的分段函數(shù)
(2)某乘客行程為16km,他準(zhǔn)備先乘一輛出租車行駛8km,然后再換乘另一輛出租車完成余下行程,請問:他是否比只乘一輛出租車完成全部行程更省錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列四個結(jié)論:
①函數(shù)$y={0.7^{\frac{1}{x}}}$的值域是(0,+∞);
②直線2x+ay-1=0與直線(a-1)x-ay-1=0平行,則a=-1;
③過點(diǎn)A(1,2)且在坐標(biāo)軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側(cè)面積等于球的表面積.
其中正確的結(jié)論序號為④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x^2}\\{{2^x}}\end{array}}\right.\begin{array}{l}{\;}&{(0≤x<a)}\\{\;}&{(x>a)}\end{array}$,若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)-b有兩個零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(0,2)B.(2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

同步練習(xí)冊答案