已知數(shù)列,是其前項的和,且滿足,對一切都有成立,設(shè).
(1)求;
(2)求證:數(shù)列 是等比數(shù)列;
(3)求使成立的最小正整數(shù)的值.
(1);(2)證明見解析;(3)5.
解析試題分析:(1)只求,只要在中令民,則有,而,故;(2)要證明數(shù)列 是等比數(shù)列,就是要證明為非零常數(shù),因此首先要找到與的關(guān)系,這由已知式中用代換可得,兩式相減,得,這個式子中只要把用代換即可得結(jié)論,當然說明,且要計算出,才能說明 是等比數(shù)列;(3)只要把和式求出,它是一個等比數(shù)列的和,故其和為,然后解不等式,可得,從而得出最小值為5.
試題解析:(1)由及 當時
故
(2)由及
得,故,
即,當時上式也成立,
,故是以3為首項,3為公比的等比數(shù)列
(3)由(2)得
故解得,最小正整數(shù)的值5
考點:(1)數(shù)列的項;(2)等比數(shù)列的定義;(3)等比數(shù)列的前項和.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足8Sn=a+4an+3(n∈N*),且a1,a2,a7依次是等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}及{bn}的通項公式;
(2)是否存在常數(shù)a>0且a≠1,使得數(shù)列{an-logabn}(n∈N*)是常數(shù)列?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)無窮等比數(shù)列的公比為q,且,表示不超過實數(shù)的最大整數(shù)(如),記,數(shù)列的前項和為,數(shù)列的前項和為.
(Ⅰ)若,求;
(Ⅱ)若對于任意不超過的正整數(shù)n,都有,證明:.
(Ⅲ)證明:()的充分必要條件為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,,若函數(shù),在點處切線過點
(1)求證:數(shù)列為等比數(shù)列;
(2)求數(shù)列的通項公式和前n項和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知曲線C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取線段OQ的中點A1,過A1作x軸的垂線交曲線C于P1,過P1作y軸的垂線交RQ于B1,記a1為矩形A1P1B1Q的面積.分別取線段OA1,P1B1的中點A2,A3,過A2,A3分別作x軸的垂線交曲線C于P2,P3,過P2,P3分別作y軸的垂線交A1P1,RB1于B2,B3,記a2為兩個矩形A2P2B2 A1與矩形A3P3B3B1的面積之和.以此類推,記an為2n-1個矩形面積之和,從而得數(shù)列{an},設(shè)這個數(shù)列的前n項和為Sn.
(I)求a2與an;
(Ⅱ)求Sn,并證明Sn<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為等差數(shù)列,為其前項和,且
(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等比數(shù)列;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為等比數(shù)列,其前項和為,已知,且,,成等差,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)已知(),記,若對于恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點是函數(shù)的圖象上一點,數(shù)列的前n項和.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)將數(shù)列前2013項中的第3項,第6項, ,第3k項刪去,求數(shù)列前2013項中剩余項的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{an}的前n項和為Sn,已知S1,S3,S2成等差數(shù)列.
(1)求{an}的公比q;
(2)若a1-a3=3,求Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com