3.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長(zhǎng)為1),則這個(gè)幾何體的體積是( 。
A.$\frac{32}{3}$B.$\frac{64}{3}$C.16D.32

分析 回歸到正方體中,該幾何體是一個(gè)底面為等腰直角三角形的三棱錐,即如圖中的幾何體A-BCD,其體積是正方體體積的$\frac{1}{6}$,即可得出結(jié)論.

解答 解:回歸到正方體中,該幾何體是一個(gè)底面為等腰直角三角形的三棱錐,即如圖中的幾何體A-BCD,其體積是正方體體積的$\frac{1}{6}$,等于$\frac{32}{3}$,
故選A.

點(diǎn)評(píng) 本題考查由三視圖求體積,考查學(xué)生的計(jì)算能力,回歸到正方體中,該幾何體是一個(gè)底面為等腰直角三角形的三棱錐是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知角α為第四象限角,且$cosα=\frac{1}{3}$,則sinα=-$\frac{2\sqrt{2}}{3}$;tan(π-α)=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,且滿足b=c,$\frac{a}$=$\frac{1-cosB}{cosA}$,若點(diǎn)O是△ABC外一點(diǎn),∠AOB=θ(0<θ<π),OA=2,OB=1,則平面四邊形OACB面積的最大值是( 。
A.$\frac{4+5\sqrt{3}}{4}$B.$\frac{8+5\sqrt{3}}{4}$C.3D.$\frac{4+\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,M(xM,yM),N(xN,yN)分別是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與兩條直線l1:y=m(A≥m≥0),l2:y=-m的兩個(gè)交點(diǎn),記S(m)=|xM-xN|,則S(m)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一1000人、高二1200人、高三n人中,抽取81人進(jìn)行問(wèn)卷調(diào)查.已知高二被抽取的人數(shù)為30,那么n=(  )
A.860B.720C.1020D.1040

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}3x-2y-3≤0\\ x-3y+6≥0\\ 2x+y-2≥0\end{array}\right.$,在這兩個(gè)實(shí)數(shù)x,y之間插入三個(gè)實(shí)數(shù),使這五個(gè)數(shù)構(gòu)成等差數(shù)列,那么這個(gè)等差數(shù)列后三項(xiàng)和的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{an},a1=1,${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$,則a10的值為(  )
A.5B.$\frac{1}{5}$C.$\frac{11}{2}$D.$\frac{2}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線y2=2px(p>0),焦點(diǎn)到準(zhǔn)線的距離為4,過(guò)點(diǎn)P(1,-1)的直線交拋物線于A,B兩點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)如果點(diǎn)P恰是線段AB的中點(diǎn),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年河北省保定市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù),若,則 ( )

A.3 B.4 C.5 D.25

查看答案和解析>>

同步練習(xí)冊(cè)答案