(本題滿分15分)已知正方體的棱長(zhǎng)為1,點(diǎn)上,點(diǎn)上,且

(1)求直線與平面所成角的余弦值;

(2)用表示平面和側(cè)面所成的銳二面角的大小,求;

(3)若分別在上,并滿足,探索:當(dāng)的重心為時(shí),求實(shí)數(shù)的取值范圍.

 

【答案】

(1)   (2),則(3) .                   

【解析】第一問(wèn)中利用以軸,軸,軸建立空間直角坐標(biāo)系

設(shè)為平面的法向量,又正方體的棱長(zhǎng)為1,

借助于,得到結(jié)論

第二問(wèn)中,,是平面的法向量

    ,又平面和側(cè)面所成的銳二面角為

    ,則 

第三問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912083843703087/SYS201207091209187807962940_DA.files/image020.png">分別在上,且

    故,

所以當(dāng)的重心為

然后利用垂直關(guān)系得到結(jié)論。

解:(1)以軸,軸,軸建立空間直角坐標(biāo)系

    又正方體的棱長(zhǎng)為1,

    設(shè)為平面的法向量

      令,則

   

    設(shè)直線與平面所成角為,

    直線與平面所成角的余弦值為          (5分)

    (2),是平面的法向量

    ,又平面和側(cè)面所成的銳二面角為

    ,則          (5分)

    (3)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912083843703087/SYS201207091209187807962940_DA.files/image020.png">分別在上,且

    故,

所以當(dāng)的重心為,而

   

當(dāng)時(shí),

    為恒等式

    所以,實(shí)數(shù)的取值范圍為                     (5分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省余姚中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:解答題

(本題滿分15分)已知點(diǎn)(0,1),,直線都是圓的切線(點(diǎn)不在軸上).
(Ⅰ)求過(guò)點(diǎn)且焦點(diǎn)在軸上的拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)(1,0)作直線與(Ⅰ)中的拋物線相交于兩點(diǎn),問(wèn)是否存在定點(diǎn)使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)及常數(shù);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省揚(yáng)州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)

已知命題p,命題q. 若“pq”為真命題,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知函數(shù)

(Ⅰ)若為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;

(Ⅲ)當(dāng),且時(shí),證明:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三下學(xué)期2月模擬考試文科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點(diǎn)A,B,

(1)當(dāng)直線的斜率為1時(shí),求線段AB的長(zhǎng);

(2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線對(duì)稱,問(wèn)是否存在直線使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題

(本題滿分15分)已知直線,曲線

   (1)若且直線與曲線恰有三個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值;

   (2)若,直線與曲線M的交點(diǎn)依次為A,B,C,D四點(diǎn),求|AB+|CD|的取值范圍。[來(lái)源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案