已知向量a=(2,1),a·b=10,|a+b|=5,則|b|等于________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測(cè)5練習(xí)卷(解析版) 題型:填空題
從個(gè)位數(shù)與十位數(shù)之和為奇數(shù)的兩位數(shù)中任取一個(gè),其個(gè)位數(shù)為0的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測(cè)3練習(xí)卷(解析版) 題型:填空題
已知數(shù)列{an}的通項(xiàng)公式是an=-n2+12n-32,其前n項(xiàng)和是Sn,對(duì)任意的m,n∈N*且m<n,則Sn-Sm的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測(cè)2練習(xí)卷(解析版) 題型:填空題
如圖,在直角三角形ABC中,AC=,BC=1,點(diǎn)M,N分別是AB,BC的中點(diǎn),點(diǎn)P是△ABC(包括邊界)內(nèi)任一點(diǎn),則·的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測(cè)2練習(xí)卷(解析版) 題型:填空題
在△ABC中,AB=2,AC=3,BC=4,則角A,B,C中最大角的余弦值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測(cè)1練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=aln(2x+1)+bx+1.
(1)若函數(shù)y=f(x)在x=1處取得極值,且曲線y=f(x)在點(diǎn)(0,f(0))處的切線與直線2x+y-3=0平行,求a的值;
(2)若b=,試討論函數(shù)y=f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測(cè)1練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)的定義域?yàn)?/span>D,若滿足①f(x)在D內(nèi)是單調(diào)函數(shù),②存在[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)?/span>[-b,-a],那么y=f(x)叫做對(duì)稱函數(shù),現(xiàn)有f(x)=-k是對(duì)稱函數(shù),那么k的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用9練習(xí)卷(解析版) 題型:填空題
數(shù)列{an}為正項(xiàng)等比數(shù)列,若a2=1,且an+an+1=6an-1(n∈N*,n≥2),則此數(shù)列的前4項(xiàng)和S4=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用5練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=-x2+4x-3ln x在[t,t+1]上不單調(diào),則t的取值范圍是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com