已知函數(shù)
(Ⅰ)當(dāng)時(shí), 求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值;
(Ⅲ) 在(Ⅰ)的條件下,設(shè),
證明:.參考數(shù)據(jù):

(Ⅰ) (Ⅱ)
(Ⅲ)用放縮法證明.

解析試題分析:(Ⅰ)當(dāng)時(shí),,
。函數(shù)的單調(diào)增區(qū)間為   
(Ⅱ) ,
當(dāng),單調(diào)增。
當(dāng),單調(diào)減. 單調(diào)增。當(dāng),單調(diào)減,    
(Ⅲ)令,
 ,     即   ,,
       
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性 不等式的證明
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)區(qū)間和函數(shù)的最小值的求法,而利用單調(diào)性證明不等式是難題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

用水清洗一堆蔬菜上殘留的農(nóng)藥,對(duì)用一定量的水清洗一次的效果作如下假定:用一個(gè)單位的水可洗掉蔬菜上殘留農(nóng)藥的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)
⑴試規(guī)定的值,并解釋其實(shí)際意義;
⑵試根據(jù)假定寫出函數(shù)應(yīng)滿足的條件和具有的性質(zhì);
⑶設(shè),現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成兩份后清洗兩次.試問用那種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

判斷y=1-2x3上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,表示神風(fēng)摩托車廠一天的銷售收入與摩托車銷售量的關(guān)系;表示摩托車廠一天的銷售成本與銷售量的關(guān)系.

(1)寫出銷售收入與銷售量之間的函數(shù)關(guān)系式;
(2)寫出銷售成本與銷售量之間的函數(shù)關(guān)系式;
(3)當(dāng)一天的銷售量為多少輛時(shí),銷售收入等于銷售成本;
(4)當(dāng)一天的銷售超過多少輛時(shí),工廠才能獲利?(利潤(rùn)=收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為億元,其中用于風(fēng)景區(qū)改造為億元。該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列三個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年改造生態(tài)環(huán)境總費(fèi)用至少億元,至多億元;③每年用于風(fēng)景區(qū)改造費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得每年改造生態(tài)環(huán)境總費(fèi)用的22%。
(1)若,,請(qǐng)你分析能否采用函數(shù)模型y作為生態(tài)環(huán)境改造投資方案;
(2)若、取正整數(shù),并用函數(shù)模型y作為生態(tài)環(huán)境改造投資方案,請(qǐng)你求出、的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)的圖像如圖所示,設(shè)兩函數(shù)的圖像交于點(diǎn).

(1)請(qǐng)指出示意圖中曲線分別對(duì)應(yīng)哪一個(gè)函數(shù)?
(2),且,指出的值,并說明理由;
(3)結(jié)合函數(shù)圖像示意圖,請(qǐng)把
四個(gè)數(shù)按從小到大的順序排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

石家莊市為鼓勵(lì)居民節(jié)約用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi),每月用電不超過100度時(shí),按每度0.52元計(jì)算,每月用電量超過100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.6元計(jì)算.
(1)設(shè)月用電度時(shí),應(yīng)繳電費(fèi)元,寫出關(guān)于的函數(shù)關(guān)系式;
(2)小明家第一季度繳納電費(fèi)情況如下:

月份
一月
二月
三月
合計(jì)
繳費(fèi)金額




問小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示是某水產(chǎn)養(yǎng)殖廠的養(yǎng)殖大網(wǎng)箱的平面圖,四周的實(shí)線為網(wǎng)衣,為避免混養(yǎng),
(1)若大網(wǎng)箱的面積為108平方米,每個(gè)小網(wǎng)箱的橫邊、縱邊設(shè)計(jì)為多少米時(shí),才能使圍成的網(wǎng)箱中篩網(wǎng)的總長(zhǎng)度最?
(2)若大網(wǎng)箱的面積為160平方米,網(wǎng)衣的造價(jià)為112元/米,篩網(wǎng)的造價(jià)為96元/米,且大網(wǎng)箱的長(zhǎng)與寬都不超過15米,則小網(wǎng)箱的橫、縱邊分別為多少米時(shí),可使總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小明和同桌小聰一起合作探索:如圖,一架5米長(zhǎng)的梯子AB斜靠在鉛直的墻壁AC上,這時(shí)梯子的底端B到墻角C的距離為1.4米.如果梯子的頂端A沿墻壁下滑0.8米,那么底端B將向左移動(dòng)多少米?

(1)小明的思路如下,請(qǐng)你將小明的解答補(bǔ)充完整:
解:設(shè)點(diǎn)B將向左移動(dòng)x米,即BE=x,則:
EC= x+1.4,DC=ACDC=-0.8=4,
DE=5,在Rt△DEC中,由EC2+DC2=DE2
得方程為:     , 解方程得:    
∴點(diǎn)B將向左移動(dòng)    米.
(2)解題回顧時(shí),小聰提出了如下兩個(gè)問題:
①將原題中的“下滑0.8米”改為“下滑1.8米”,那么答案會(huì)是1.8米嗎?為什么?
②梯子頂端下滑的距離與梯子底端向左移動(dòng)的距離能相等嗎?為什么?
請(qǐng)你解答小聰提出的這兩個(gè)問題.

查看答案和解析>>

同步練習(xí)冊(cè)答案