【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程;
(2)已知直線與軸的交點為,與曲線的交點為, ,若的中點為,求的長.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), 表示導(dǎo)函數(shù).
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)討論函數(shù)的單調(diào)區(qū)間;
(3)對于曲線上的不同兩點,求證:存在唯一的,使直線的斜率等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,,短軸的兩個端點分別為,.
(1)若為等邊三角形,求橢圓的方程;
(2)若橢圓的短軸長為2,過點的直線與橢圓相交于、兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,右頂點為,直線過原點,且點在x軸的上方,直線與分別交直線: 于點、.
(1)若點,求橢圓的方程及△ABC的面積;
(2)若為動點,設(shè)直線與的斜率分別為、.
①試問是否為定值?若為定值,請求出;否則,請說明理由;
②求△AEF的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a=(1,2),b=(-2,n),a與b的夾角是45°.
(1) 求b;
(2) 若c與b同向,且a與c-a垂直,求向量c的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABC﹣A1B1C1是底面邊長為2,高為的正三棱柱,經(jīng)過AB的截面與上底面相交于PQ,設(shè)C1P=λC1A1(0<λ<1).
(Ⅰ)證明:PQ∥A1B1;
(Ⅱ)當(dāng)時,在圖中作出點C在平面ABQP內(nèi)的正投影F(說明作法及理由),并求四面體CABF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,則下列說法不正確的是( )
A.若點在直線上運(yùn)動時,三棱錐的體積不變
B.若點是平面上到點和距離相等的點,則點的軌跡是過點的直線
C.若點在直線上運(yùn)動時,直線與平面所成角的大小不變
D.若點在直線上運(yùn)動時,二面角的大小不變
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com