(2007•上海模擬)設(shè)z=x+yi(x,y∈R),i是虛數(shù)單位,滿足4≤z+
64z
≤10

(1)求證:y=0時(shí)滿足不等式的復(fù)數(shù)不存在.
(2)求出復(fù)數(shù)z對(duì)應(yīng)復(fù)平面上的軌跡.
分析:(1)當(dāng)y=0時(shí),z=x≠0,則4≤x+
64
x
≤10⇒
x+
64
x
≥4
x+
64
x
≤10
x2-4x+64
x
≥0
x2-10x+64
x
≤0
,由
x2-4x+64
x
≥0
,因?yàn)閤2-4x+64>0,則x>0.由此能夠證明滿足不等式的復(fù)數(shù)不存在.
(2)4≤x+yi+
64(x-yi)
x2+y2
≤10
,由題知:z+
64
z
必為實(shí)數(shù).所以:
y-
64y
x2+y2
=0
4≤x+
64x
x2+y2
≤10
y=0(舍)或x2+y2=64,2≤x≤5.由此能求出z所對(duì)應(yīng)的軌跡.
解答:解:(1)證明:當(dāng)y=0時(shí),z=x≠0…(2分)
4≤x+
64
x
≤10⇒
x+
64
x
≥4
x+
64
x
≤10
x2-4x+64
x
≥0
x2-10x+64
x
≤0
…(4分)
x2-4x+64
x
≥0
,因?yàn)閤2-4x+64>0,則x>0
x2-10x+64
x
≤0
,因?yàn)閤2-10x+64>0,則x<0
所以不等式無解,滿足不等式的復(fù)數(shù)不存在.…(7分)
(2)解:4≤x+yi+
64(x-yi)
x2+y2
≤10
,由題知:z+
64
z
必為實(shí)數(shù)…(9分)
所以:
y-
64y
x2+y2
=0
4≤x+
64x
x2+y2
≤10
y=0(舍)或x2+y2=64,2≤x≤5…(12分)
所以z所對(duì)應(yīng)的軌跡是以原點(diǎn)為圓心,以8為半徑的圓弧.…(14分)
點(diǎn)評(píng):本題考查復(fù)數(shù)的代數(shù)式表示法及其向何意義,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•上海模擬)已知命題“若x+y>0,則x>0且y>0”.這個(gè)命題與它的否命題應(yīng)當(dāng)存在( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•上海模擬)一質(zhì)點(diǎn)在直角坐標(biāo)平面上沿直線勻速行進(jìn),上午7時(shí)和9時(shí)該動(dòng)點(diǎn)的坐標(biāo)依次為(1,2)和(3,-2),則下午5時(shí)該點(diǎn)的坐標(biāo)是
(11,-18)
(11,-18)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•上海模擬)函數(shù)f(x)=log
13
x+2(x≥3)
的反函數(shù)的定義域是
(-∞,1]
(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•上海模擬)化簡(jiǎn):
(secx-cosx)(cscx-sinx)
sin2x
=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•上海模擬)設(shè)(2x-3)10=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,則a0+a1+a2+…+a10=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案