【題目】如果存在函數(shù)為常數(shù)),使得對函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個線性覆蓋函數(shù).給出如下四個結(jié)論:

①函數(shù)存在線性覆蓋函數(shù)

②對于給定的函數(shù),其線性覆蓋函數(shù)可能不存在,也可能有無數(shù)個;

為函數(shù)的一個線性覆蓋函數(shù);

④若為函數(shù)的一個線性覆蓋函數(shù),則

其中所有正確結(jié)論的序號是___________.

【答案】②③.

【解析】

根據(jù)題中提供的定義,對每一個選項通過證明或找反例分析對錯,從而解得正確選項.

解:選項①:假設(shè)存在,為函數(shù)的一個線性覆蓋函數(shù),此時顯然不成立,只有才有可能使得對函數(shù)定義域內(nèi)任意都有成立,即,而事實上,增長的速度比要快很多,當時,的函數(shù)值一定會大于的函數(shù)值,故選項①不成立;

選項②:如函數(shù),則就是函數(shù)的一個線性覆蓋函數(shù),且有無數(shù)個,再如①中的就沒有線性覆蓋函數(shù),所以命題②正確;

選項③:設(shè)

,

,解得,

時,,函數(shù)為單調(diào)增函數(shù);

時,,函數(shù)為單調(diào)減函數(shù);

所以

,

所以上恒成立,故滿足定義,選項③正確;

選項④:若為函數(shù)的一個線性覆蓋函數(shù)

R上恒成立,

R上恒成立,

,

因為開口向下,對稱軸為,

所以當時,

所以,所以選項④錯誤,

故本題選擇②③.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列中,若,則下列命題中真命題個數(shù)是(

1)若數(shù)列為常數(shù)數(shù)列,則;

2)若,數(shù)列都是單調(diào)遞增數(shù)列;

3)若,任取中的構(gòu)成數(shù)列的子數(shù)),則都是單調(diào)數(shù)列.

A.B. C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2a–lnxg(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).

(1)討論f(x) 的單調(diào)性;

(2)證明:當x>1時,g(x)>0;

(3)如果f(x)>g(x) 在區(qū)間(1,+∞)內(nèi)恒成立求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

命題:中,若的逆命題為假命題;

②“是直線與圓相交的充分不必要條件;

命題:的逆否命題是;

,則為真命題。

其中正確的說法個數(shù)為()

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇函數(shù),為常數(shù).

1)求的值

2)判斷函數(shù)上的單調(diào)性,并說明理由;

3)若對于區(qū)間上的每一個值,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的左、右焦點分別為, 為坐標原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的方程為,過點為常數(shù))作拋物線的兩條切線,切點分別為,.

(1)過焦點且在軸上截距為的直線與拋物線交于,兩點,,兩點在軸上的射影分別為,,且,求拋物線的方程;

(2)設(shè)直線,的斜率分別為.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足,且方程有兩個相等的實數(shù)根

1)求函數(shù)的解析式;

2)若上的奇函數(shù),且時,,求的解析式;

3)若不等式對一切實數(shù),恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃在報刊與網(wǎng)絡(luò)媒體上共投放30萬元的廣告費,根據(jù)計劃,報刊與網(wǎng)絡(luò)媒體至少要投資4萬元.根據(jù)市場前期調(diào)研可知,在報刊上投放廣告的收益與廣告費滿足,在網(wǎng)絡(luò)媒體上投放廣告的收益與廣告費滿足,設(shè)在報刊上投放的廣告費為(單位:萬元),總收益為(單位:萬元).

(1)當在報刊上投放的廣告費是18萬元時,求此時公司總收益;

(2)試問如何安排報刊、網(wǎng)絡(luò)媒體的廣告投資費,才能使總收益最大?

查看答案和解析>>

同步練習冊答案