【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
【答案】
(1)解:依題意得,10(2a+0.02+0.03+0.04)=1,解得a=0.005
(2)解:這100名學(xué)生語文成績的平均分為:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分)
(3)解:數(shù)學(xué)成績在[50,60)的人數(shù)為:100×0.05=5,
數(shù)學(xué)成績在[60,70)的人數(shù)為: ,
數(shù)學(xué)成績在[70,80)的人數(shù)為: ,
數(shù)學(xué)成績在[80,90)的人數(shù)為: ,
所以數(shù)學(xué)成績在[50,90)之外的人數(shù)為:100﹣5﹣20﹣40﹣25=10
【解析】(1)由頻率分布直方圖的性質(zhì)可10(2a+0.02+0.03+0.04)=1,解方程即可得到a的值;(2)由平均數(shù)加權(quán)公式可得平均數(shù)為55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,計(jì)算出結(jié)果即得;(3)按表中所給的數(shù)據(jù)分別計(jì)算出數(shù)學(xué)成績在分?jǐn)?shù)段的人數(shù),從總?cè)藬?shù)中減去這些段內(nèi)的人數(shù)即可得出數(shù)學(xué)成績在[50,90)之外的人數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若有三個(gè)極值點(diǎn),求的取值范圍;
(2)若對任意都恒成立的的最大值為,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線, ,則下列說法正確的是( )
A. 把上各點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線
B. 把上各點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線
C. 把曲線向右平移個(gè)單位長度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線
D. 把曲線向右平移個(gè)單位長度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場調(diào)查和預(yù)測,投資債券等穩(wěn)鍵型產(chǎn)品A的收益與投資成正比,其關(guān)系如圖1所示;投資股票等風(fēng)險(xiǎn)型產(chǎn)品B的收益與投資的算術(shù)平方根成正比,其關(guān)系如圖2所示(收益與投資單位:萬元).
(1)分別將A、B兩種產(chǎn)品的收益表示為投資的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有10萬元資金,并全部投資債券等穩(wěn)鍵型產(chǎn)品A及股票等風(fēng)險(xiǎn)型產(chǎn)品B兩種產(chǎn)品,問:怎樣分配這10萬元投資,才能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的底面是梯形,且, 平面, 是中點(diǎn), .
(Ⅰ)求證: 平面;
(Ⅱ)若, ,求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,an+1= Sn(n=1,2,3,…).
(1)證明:數(shù)列{ }是等比數(shù)列;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P為橢圓 =1上的一個(gè)點(diǎn),M,N分別為圓(x+3)2+y2=1和圓(x﹣3)2+y2=4上的點(diǎn),則|PM|+|PN|的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com