【題目】如圖,在邊長(zhǎng)為2a的正方形ABCD中,E,F(xiàn)分別為AB,BC的中點(diǎn),沿圖中虛線將3個(gè)三角形折起,使點(diǎn)A,B,C重合,重合后記為點(diǎn)P.
問(wèn):
(1)折起后形成的幾何體是什么幾何體?
(2)這個(gè)幾何體共有幾個(gè)面,每個(gè)面的三角形有何特點(diǎn)?
(3)每個(gè)面的三角形面積為多少?
【答案】
(1)解:如圖,折起后的幾何體是三棱錐.
(2)解:這個(gè)幾何體共有4個(gè)面,其中△DEF為等腰三角形,△PEF為等腰直角三角形,△DPE和△DPF均為直角三角形
(3)解:S△PEF= a2,S△DPF=S△DPE= ×2a×a=a2,
S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2- a2-a2-a2= a2.
【解析】1.根據(jù)所學(xué)幾何體特征以及題目所給信息確認(rèn)幾何體名稱;2.根據(jù)第一問(wèn)得出的幾何體觀察分析即可得到“每個(gè)面的三角形”的特點(diǎn)。3.由已知條件知該圖像是正方形,要求正方形中間的三角形面積=正方形面積-其余3個(gè)三角形的面積。再結(jié)合第二問(wèn)結(jié)論即可解出答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2+(b﹣1)x+3.
(1)若不等式f(x)>0的解為(﹣1, ),求不等式bx2﹣3x+a≤0的解集;
(2)若f(1)=4,a>0,b>0,求ab的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,A、B、C是三角形的三內(nèi)角,a、b、c是三內(nèi)角對(duì)應(yīng)的三邊,已知b2 , a2 , c2成等差數(shù)列.
(1)求cosA的最小值;
(2)若a=2,當(dāng)A最大時(shí),△ABC面積的最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,PA⊥底面ABCD , AD∥BC , AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD , N為PC的中點(diǎn).
(1)證明MN∥平面PAB;
(2)求四面體N-BCM的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中錯(cuò)誤的是( )
A.在一次試卷分析中,從每個(gè)考室中抽取第5號(hào)考生的成績(jī)進(jìn)行統(tǒng)計(jì),不是簡(jiǎn)單隨機(jī)抽樣
B.對(duì)一個(gè)樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如下:
區(qū)間 | [17,19) | [19,21) | [21,23) | [23,25) | [25,27) | [27,29) | [29,31) | [31,33] |
頻數(shù) | 1 | 1 | 3 | 3 | 18 | 16 | 28 | 30 |
估計(jì)小于29的數(shù)據(jù)大約占總體的58%
C.設(shè)產(chǎn)品產(chǎn)量與產(chǎn)品質(zhì)量之間的線性相關(guān)系數(shù)為﹣0.91,這說(shuō)明二者存在著高度相關(guān)
D.通過(guò)隨機(jī)詢問(wèn)110名性別不同的行人,對(duì)過(guò)馬路是愿意走斑馬線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如表列聯(lián)表:
男 | 女 | 總計(jì) | |
走天橋 | 40 | 20 | 60 |
走斑馬線 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由 ,則有99%以上的把握認(rèn)為“選擇過(guò)馬路方式與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)證明:AG∥平面BDE.
(2)求平面BDE和平面ADE所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=a﹣x2( ≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考查某廠2000名工人的生產(chǎn)技能情況,隨機(jī)抽查了該廠n名工人某天的產(chǎn)量(單位:件),整理后得到如下的頻率分布直方圖(產(chǎn)品數(shù)量的分組區(qū)間為[10,15),[15,20),[20,25),[25,30),[30,35]),其中產(chǎn)量在[20,25)的工人有6名.
(Ⅰ)求這一天產(chǎn)量不小于25的工人人數(shù);
(Ⅱ)工廠規(guī)定從產(chǎn)量低于20件的工人中隨機(jī)的選取2名工人進(jìn)行培訓(xùn),求這2名工人不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,函數(shù)f(x)=2cosxsin(x﹣A)+sinA(x∈R)在x= 處取得最大值.
(1)當(dāng) 時(shí),求函數(shù)f(x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com