4.已知集合A={-1,0,1},B={y|y=2x-2,x∈A},則A∩B=( 。
A.{0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

分析 運(yùn)用列舉法求出集合B,再由交集的定義,即可得到所求.

解答 解:集合A={-1,0,1},
B={y|y=2x-2,x∈A}={2-1-2,20-2,21-2}
={-$\frac{3}{2}$,-1,0},
則A∩B={-1,0},
故選:C.

點(diǎn)評(píng) 本題考查集合的運(yùn)算,主要是交集的運(yùn)算,注意運(yùn)用交集的定義和列舉法表示集合,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)函數(shù)$f(x)=\sqrt{{e^x}+2x-a}$,若曲線y=cosx上存在點(diǎn)(x0,y0)使得f(f(y0))=y0,則實(shí)數(shù)a的取值范圍是( 。
A.[1,e]B.[e-1-1,1]C.[1,e+1]D.[e-1-1,e+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)正實(shí)數(shù)x,y,則|x-y|+$\frac{1}{x}$+y2的最小值為( 。
A.$\frac{7}{4}$B.$\frac{3\root{3}{2}}{2}$C.2D.$\root{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=alnx+x2-(a+2)x恰有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-1,+∞)B.(-2,0)C.(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=2|x+1|+|x-a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函數(shù)f(x)的最小值為3,求實(shí)數(shù) a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)={x^2}+\sqrt{2}(m-1)x+\frac{m}{4}$,現(xiàn)有一組數(shù)據(jù)(數(shù)據(jù)量較大),從中隨機(jī)抽取10個(gè),繪制所得的莖葉圖如圖所示,且莖葉圖中的數(shù)據(jù)的平均數(shù)為2.(莖葉圖中的數(shù)據(jù)均為小數(shù),其中莖為整數(shù)部分,葉為小數(shù)部分)
(Ⅰ)現(xiàn)從莖葉圖的數(shù)據(jù)中任取4個(gè)數(shù)據(jù)分別替換m的值,
求至少有2個(gè)數(shù)據(jù)使得函數(shù)f(x)沒(méi)有零點(diǎn)的概率;
(Ⅱ)以頻率估計(jì)概率,若從該組數(shù)據(jù)中隨機(jī)抽取4個(gè)數(shù)據(jù)分別替換m的值,記使得函數(shù)f(x)沒(méi)有零點(diǎn)的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知等比數(shù)列{an}滿足an+1+an=9•2n-1,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=nan,數(shù)列{bn}的前n項(xiàng)和為Sn,若不等式Sn>kan-1對(duì)一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某校高二文科100名學(xué)生參加了語(yǔ)數(shù)英學(xué)科競(jìng)賽,年級(jí)為了解這些學(xué)生語(yǔ)文和數(shù)學(xué)成績(jī)的情況,將100名學(xué)生的語(yǔ)文和數(shù)學(xué)成績(jī)統(tǒng)計(jì)如表:
語(yǔ)文
優(yōu)及格
數(shù)學(xué)優(yōu)13m5
12n9
及格10147
(I)若數(shù)學(xué)成績(jī)的優(yōu)秀率為35%,現(xiàn)利用隨機(jī)抽樣從數(shù)學(xué)成績(jī)“優(yōu)秀”的學(xué)生中抽取1名學(xué)生,求該生語(yǔ)文成績(jī)?yōu)椤凹案瘛钡母怕剩?br />(II)在語(yǔ)文成績(jī)?yōu)椤傲肌钡膶W(xué)生中,已知m≥10,n≥10,求數(shù)學(xué)成績(jī)“優(yōu)”比“良”的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是邊長(zhǎng)為2的等邊三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案