分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(1)=0,求出a的值,檢驗(yàn)即可;
(Ⅱ)求出g(x)的解析式,求出函數(shù)g(x)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出g(x)的最大值即可.
解答 解:(Ⅰ) 由f(x)=ax3+x有f'(x)=3ax2+1
因?yàn)閒(x)在x=1處取得極值,故f'(1)=3a+1=0
∴$a=-\frac{1}{3}$
經(jīng)檢驗(yàn):當(dāng)$a=-\frac{1}{3}$時(shí),符合題意,故$a=-\frac{1}{3}$
(Ⅱ)由(Ⅰ)知:g(x)=(-x2+1)(x2+px+q)
∵g(x)的圖象關(guān)于直線x=-1對稱,故函數(shù)g(x-1)為偶函數(shù)
又g(x-1)=[-(x-1)2+1][(x-1)2+p(x-1)+q]=-x4+(4-p)x3+(3p-q-5)x2+2(1-p+q)x
∴$\left\{\begin{array}{l}4-p=0\\ 2({1-p+q})=0\end{array}\right.$,解得p=4,q=3
∴g(x)=(-x2+1)(x2+4x+3)
∴g'(x)=-2x(x2+4x+3)+(-x2+1)(2x+4)=-4(x+1)(x2+2x-1)
令g'(x)>0有$x<-1-\sqrt{2}$或$-1<x<-1+\sqrt{2}$
令g'(x)<0有$-1-\sqrt{2}<x<-1$或$x>-1+\sqrt{2}$
∴函數(shù)g(x)在區(qū)間$({-∞,-1-\sqrt{2}}),({-1,-1+\sqrt{2}})$上單調(diào)遞增,
在區(qū)間$({-1-\sqrt{2},-1}),({-1+\sqrt{2},+∞})$上單調(diào)遞減
∴函數(shù)g(x)的最大值為$g({-1±\sqrt{2}})=4$
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-x3,x∈R | B. | y=x2,x∈R | C. | y=x,x∈R | D. | $y={({\frac{1}{2}})^x}$,x∈R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com