如圖BC是Rt△ABC的斜邊,過A作△ABC所在平面a垂線AP,連PB、PC,過A作AD⊥BC于D,連PD,那么圖中直角三角形的個(gè)數(shù)是( )

A.4個(gè)
B.6個(gè)
C.7個(gè)
D.8個(gè)
【答案】分析:利用AP⊥面ABC,Rt△ABC,AD是PD在面ABC內(nèi)的射影,故由AD⊥BC可得PD⊥BC.
解答:解:∵BC是Rt△ABC的斜邊,
A作△ABC所在平面a垂線AP,AD⊥BC于D,
圖中直角三角形有:
△ABC,△PAB,△PAD,△PAC,△ADB,△ADC,△PDB,△PDC 共8個(gè),
故選D.
點(diǎn)評(píng):本題考查三垂線定理的應(yīng)用,以及棱錐的結(jié)構(gòu)特征,體現(xiàn)數(shù)形結(jié)合的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,AB=BC=4,點(diǎn)£在線段AB上.過點(diǎn)E作EF∥BC交AC于點(diǎn)F,將△AEF沿EF折起到△PEF的位置(點(diǎn)A與P重合),使得∠PEB=60°.
(I )求證:EF丄PB;
(II )試問:當(dāng)點(diǎn)E在線段AB上移動(dòng)時(shí),二面角P-FC-B的平面角的余弦值是否為定值?若是,求出其定值;若不是,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點(diǎn),連接DE.
(1)DE與半圓O相切嗎?若相切,請(qǐng)給出證明;若不相切,請(qǐng)說明理由;
(2)若AD、AB的長(zhǎng)是方程x2-10x+24=0的兩個(gè)根,求直角邊BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖①,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4;將△BCD沿CD折起,如圖②,使得平面BCD⊥平面ACD,連接AB,點(diǎn)F是AB的中點(diǎn).
(1)求證:DE⊥平面BCD;
(2)在線段DE上是否存在一點(diǎn)G,使FG∥平面BDC?若存在,求出點(diǎn)G的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點(diǎn)D是斜邊AB的中點(diǎn),則tan∠ODA=(  )
精英家教網(wǎng)
A、
3
2
B、
3
3
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,D是Rt△ABC斜邊BC上一點(diǎn),AB=AD,記∠CAD=α,∠ABC=β.

(1)證明sinα+cos2β=0;

(2)若AC=DC,求β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案