已知函數(shù)f(x)=(x+1)lnx-x+1.
(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范圍;
(Ⅱ)證明:(x-1)f(x)≥0.
(Ⅰ)函數(shù)的定義域?yàn)椋?,+∞)
求導(dǎo)函數(shù),可得f′(x)=
x+1
x
+lnx-1=lnx+
1
x
,…(2分)
∴xf′(x)=xlnx+1,
題設(shè)xf′(x)≤x2+ax+1等價(jià)于lnx-x≤a,
令g(x)=lnx-x,則g′(x)=
1
x
-1
.…(4分)
當(dāng)0<x<1時(shí),g′(x)>0;當(dāng)x≥1時(shí),g′(x)≤0,
∴x=1是g(x)的最大值點(diǎn),
∴g(x)≤g(1)=-1.…(6分)
綜上,a的取值范圍是[-1,+∞).…(7分)
(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=-1,即lnx-x+1≤0;
當(dāng)0<x<1時(shí),f(x)=(x+1)lnx-x+1=xlnx+(lnx-x+1)≤0;…(10分)
當(dāng)x≥1時(shí),f(x)=lnx+(xlnx-x+1)=lnx+x(lnx+
1
x
-1)≥0
所以(x-1)f(x)≥0…(13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x3+ax2-4,(a∈R)
(Ⅰ)若y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線的傾斜角為
π
4
,求a;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)是f′(x),在(Ⅰ)的條件下,若m,n∈[-1,1],求f(m)+f′(n)的最小值.
(Ⅲ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=kx+1與曲線y=lnx有公共點(diǎn),則實(shí)數(shù)k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商品每件成本5元,售價(jià)14元,每星期賣出75件.如果降低價(jià)格,銷售量可以增加,且每星期多賣出的商品件數(shù)m與商品單價(jià)的降低值x(單位:元,0≤x<9)的平方成正比,已知商品單價(jià)降低1元時(shí),一星期多賣出5件.
(1)將一星期的商品銷售利潤(rùn)y表示成x的函數(shù);
(2)如何定價(jià)才能使一個(gè)星期的商品銷售利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某商品的進(jìn)貨單價(jià)為1元/件,商戶甲往年以單價(jià)2元/件銷售該商品時(shí),年銷量為1萬件,今年擬下調(diào)銷售單價(jià)以提高銷量,增加收益.據(jù)測(cè)算,若今年的實(shí)際銷售單價(jià)為x元/件(1≤x≤2),今年新增的年銷量(單位:萬件)與(2-x)2成正比,比例系數(shù)為4.
(1)寫出今年商戶甲的收益y(單位:萬元)與今年的實(shí)際銷售單價(jià)x間的函數(shù)關(guān)系式;
(2)商戶甲今年采取降低單價(jià),提高銷量的營(yíng)銷策略是否能獲得比往年更大的收益(即比往年收益更多)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商品每件成本9元,售價(jià)為30元,每星期賣出432件.如果降低價(jià)格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價(jià)的降低值x(單位:元,0≤x≤21)的平方成正比.已知商品售價(jià)降低2元時(shí),一星期多賣出24件.
(Ⅰ)將一個(gè)星期內(nèi)該商品的銷售利潤(rùn)表示成x的函數(shù);
(Ⅱ)如何定價(jià)才能使一個(gè)星期該商品的銷售利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x+
2
x
+alnx,a∈R

(1)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
(2)記函數(shù)g(x)=x2[f′(x)+2x-2],若g(x)的最小值是-6,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當(dāng)x=
2
3
時(shí),y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

上可導(dǎo),,則____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案