在以O(shè)為原點的直角坐標(biāo)系中,點A(4,-3)為△OAB的直角頂點,若|AB|=2|OA|,且點B的縱坐標(biāo)大于0
(1)求向量的坐標(biāo);
(2)是否存在實數(shù)a,使得拋物線y=ax2-1上總有關(guān)于直線OB對稱的兩個點?若存在,求實數(shù)a的取值范圍,若不存在,說明理由;
【答案】分析:(1)假設(shè)向量的值,根據(jù)|AB|=2|OA|、AB⊥OA得到方程組可解出向量的坐標(biāo).
(2)設(shè)P(x1,y1),Q(x2,y2)為拋物線上關(guān)于直線OB對稱的兩點,根據(jù)對稱性找出x1,y1,x2,y2的關(guān)系,聯(lián)立方程可解.
解答:解:(1)設(shè),
則由,得
解得
因為
所以υ-3>0,υ=8
=(6,8);
(2)設(shè)P(x1,y1),Q(x2,y2)為
拋物線上關(guān)于直線OB對稱的兩點,
,又因為
可得
即x1,x2為方程的兩個相異實根
于是,由,可得
故當(dāng)時,
拋物線y=ax2-1上總有關(guān)于直線OB對稱的兩個點.
點評:本題主要考查向量的基本運算和對稱點的問題.向量運算是高考必考題,注意運算法則的記憶.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在以O(shè)為原點的直角坐標(biāo)系中,點A(4,-3)為△OAB的直角頂點.已知|AB|=2|OA|,且點B的縱坐標(biāo)大于零.
(1)求向量
AB
的坐標(biāo);
(2)求圓x2-6x+y2+2y=0關(guān)于直線OB對稱的圓的方程;
(3)是否存在實數(shù)a,使拋物線y=ax2-1上總有關(guān)于直線OB對稱的兩個點?若不存在,說明理由:若存在,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在以O(shè)為原點的直角坐標(biāo)系中,點A(4,-3)為△OAB的直角頂點,已知|AB|=2|OA|,且點B的縱坐標(biāo)大于0.
(Ⅰ)求
AB
的坐標(biāo);
(Ⅱ)求圓x2-6x+y2+2y=0關(guān)于直線OB對稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在以O(shè)為原點的直角坐標(biāo)系中,點A(4,-3)為△OAB的直角頂點,若|AB|=2|OA|,且點B的縱坐標(biāo)大于0
(1)求向量
AB
的坐標(biāo);
(2)是否存在實數(shù)a,使得拋物線y=ax2-1上總有關(guān)于直線OB對稱的兩個點?若存在,求實數(shù)a的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(03年上海卷)(14分)

在以O(shè)為原點的直角坐標(biāo)系中,點A(4,-3)為△OAB的直角頂點.已知|AB|=2|OA|,且點B的縱坐標(biāo)大于零.

   (1)求向量的坐標(biāo);

   (2)求圓關(guān)于直線OB對稱的圓的方程;

   (3)是否存在實數(shù)a,使拋物線上總有關(guān)于直線OB對稱的兩個點?若不存在,說明理由:若存在,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在以O(shè)為原點的直角坐標(biāo)系中,點A(4,-3)為△OAB的直角頂點,已知|AB|=2|OA|,且點B的縱坐標(biāo)大于0。

(Ⅰ)求的坐標(biāo);

(Ⅱ)求圓關(guān)于直線OB對稱的圓的方程。

查看答案和解析>>

同步練習(xí)冊答案